WIT Press


Multiscale Models And Approximation Algorithms For Protein Electrostatics

Price

Free (open access)

Paper DOI

10.2495/BEM380131

Volume

61

Pages

12

Page Range

163 - 174

Published

2015

Size

825 kb

Author(s)

J. P. Bardhan, M. G. Knepley

Abstract

Electrostatic forces play many important roles in molecular biology, but are hard to model due to the complicated interactions between biomolecules and the surrounding solvent, a fluid composed of water and dissolved ions. Continuum model have been surprisingly successful for simple biological questions, but fail for important problems such as understanding the effects of protein mutations. In this paper we highlight the advantages of boundary-integral methods for these problems, and our use of boundary integrals to design and test more accurate theories. Examples include a multiscale model based on nonlocal continuum theory, and a nonlinear boundary condition that captures atomic-scale effects at biomolecular surfaces.

Keywords

electrostatics, proteins, solvation, multiscale, nonlocal, nonlinear, electrolyte, boundary-integral equations, boundary-element methods