WIT Press


Sustainable Water And Energy Management In Australia’s Farming Landscapes

Price

Free (open access)

Paper DOI

10.2495/WS150281

Volume

200

Pages

13

Page Range

329 - 341

Published

2015

Size

334 kb

Author(s)

W. J. Hurditch

Abstract

Australia’s ancient geology, continental isolation and long, stable biophysical evolution have produced a unique and biodiverse flora and fauna complex, and well-balanced mechanisms for handling water, nutrients and organic production in its landscapes. When humans arrived more than 40,000 years ago, Australia’s water, nutrient and energy systems were essentially self-sustaining. Western agricultural methods have since uncoupled parts of the innate productivity system that had long sustained these natural landscape functions. Many Australian farming and grazing businesses are today challenged from unreliable rainfall, declining soil health and rising debt. New landscape management approaches are now emerging. Some involve rehydration to reinstate Australia’s natural biophysical landscape functions and processes, and can deliver both ecosystem resilience and profitability to farming enterprises. Benefits of landscape rehydration for farmers include greater water reliability, improved soil organic content and reduced reliance on high-cost artificial inputs. It also assists in mitigating climate change, as vegetated, rehydrated landscapes dissipate incoming solar thermal energy via the plant-driven photosynthetic process and the daily water cycle. This feature, until now little recognised in mainstream climate change discussions, adds a major dimension to this opportunity for the world’s landscapes.

Keywords

Australia, salinity, rehydration, fertility, sustainable farming, soil