Boundary-domain integral method for vorticity transport equation with variable viscosity
Price
Free (open access)
Volume
Volume 6 (2018), Issue 6
Pages
9
Page Range
1087 - 1096
Paper DOI
10.2495/CMEM-V6-N6-1087-1096
Copyright
WIT Press
Author(s)
J. RAVNIK & J. TIBAUT
Abstract
In this paper, we derive a boundary-domain integral formulation for the vorticity transport equation under the assumption that the viscosity of the fluid, through which the vorticity is transported by diffusion and convection, is spatially changing. The vorticity transport equation is a second order partial differential equation of a diffusion-convection type.
The final boundary-domain integral representation of the vorticity transport equation is discretized using a domain decomposition approach, where a system of linear equations is set-up for each sub-domain, while subdomains are joint by compatibility conditions. The validity of the method is checked using several analytical examples. Convergence properties are studied yielding that the proposed discretization technique is second order accurate for constant and variable viscosity cases.
Keywords
boundary-domain element method, variable material properties, vorticity transport equation