WIT Press

Advances In Aeropropulsion Tribology And Design Using Five Key Parameters


Free (open access)

Paper DOI






Page Range

83 - 94




1,260 kb


L. Wedeven, H. Chin, W. Ogden & D. Haluck


Difficult tribology problems with wear, scuffing and contact fatigue in aeropropulsion are being addressed with a systematic approach. Solutions to these problems have been found using a systematic tribology approach involving detailed failure analysis and simulation testing. The risks in advanced development have been substantially reduced by the inclusion of tribology attributes in mechanical system design. These attributes control lubrication and failure mechanisms (wear, scuffing and contact fatigue). The developmental process involves five key tribology parameters. Simulation of wear, scuffing and micro-pitting can be accomplished with the control of the five key tribology parameters: entraining velocity (Ue), sliding velocity (Us), film thickness-tosurface roughness ratio (h/), contact stress (both global and asperity scale) and contact temperature. Specialized test machines, test specimens and test protocols that control these parameters are able to replicate the failure mechanisms experienced in service. This approach has been used to develop next generation jet engine oil formulations that are compatible with stainless steel bearing materials. Simulation testing involving oil formulations, along with bearing steel composition and heat treatments, shows what technologies have the greatest impact on performance and where future design and development efforts should be focused. Keywords: bearing steels, adhesive wear, aeropropulsion bearings, tribology testing, systematic tribology.


bearing steels, adhesive wear, aeropropulsion bearings, tribology testing, systematic tribology