WIT Press


Towards A Sustainable System: Application Of Temporal Analysis On Flood Risk Management

Price

Free (open access)

Paper DOI

10.2495/SDP110061

Volume

150

Pages

10

Page Range

59 - 68

Published

2011

Size

3,373 kb

Author(s)

Z. Alsaqqaf & H. Zhang

Abstract

The escalating frequencies and changing patterns of climate change impacts, such as precipitation rates and sea levels, question the reliability of the existing engineering infrastructure, in terms of design and planning criteria for which designers and decision makers need to or account for. The objective of this paper is to assess the performance of an existing engineering infrastructure by measuring three variables: Vulnerability (β), Reliability (α), Resiliency (γ). These variables will be implemented temporally to a floodplain catchment, where performance and engineering sustainability can be depicted. The depiction will define the system’s behaviour upon a natural event such as precipitation or sea-level rise. Nevertheless, Flood Risk Index (FRI), which depends on (β, α and γ), will be applied as an overall index to demonstrate the trend context as well as give implications of the sensitivity significance of β, α and γ. The main outcome of this paper is to depict the relative sustainability or as known as the performance assessment indicators temporally; and to examine the correlation between the indicators on a real-flow data. These procedures shall ultimately provide implications on the implementation of the indicators to achieve a relatively sustainable system. Keywords: reliability, vulnerability, resiliency, flood risk index, sustainability, performance assessment. 1 Introduction In the last decade, more frequent storms and sea level rises have been observed and monitored in Australia due to climate change especially southeast Queensland; which results in the increase of floods in many areas that already prone to flood. Consequently, new floodplains will emerge to cope with such an

Keywords

reliability, vulnerability, resiliency, flood risk index, sustainability, performance assessment