WIT Press


Railway Car Dynamic Response To Track Transition Curve And Single Standard Turnout

Price

Free (open access)

Volume

88

Pages

10

Published

2006

Size

478 kb

Paper DOI

10.2495/CR060831

Copyright

WIT Press

Author(s)

J. Droździel & B. Sowiński

Abstract

In this paper vehicle dynamic responses to clothoidal, sinusoidal and parabolic types of transition curves are considered. The responses such as vehicle motion and wheel-rail forces are significantly dependent on the type of curve. Also the dynamic interaction between the railway car and a track on a switch and a crossing of a standard turnout is considered. It was made for car-running direction \“on” and \“from” a switch facing point, and for nominal and geometrically imperfect track. The results imply the conclusion that specific transition curve and turnout parameters create a vital cause of dynamic interaction growth between a vehicle and a track. Keywords: vehicle, track, dynamics, transition curve, standard turnout. 1 Introduction In this paper, the railway car–track system dynamic interaction influenced by track transient excitations is presented. A few transition curves and a single standard turnout are taken into account. Simulation results are obtained and discussed for elastically moveable rails. Modern railway tracks designed for high speed traffic should meet a number of requirements regarding travel comfort and safety. Designed transition track geometry changes may cause additional dynamic forces which are dependent, among others, on the shape and magnitude of these changes. During track operation the changes are additionally affected by the state of track maintenance. They are also the cause of increased local degradation of track components. For analyzing dynamic processes of this type, an appropriate simulation model was elaborated.

Keywords

vehicle, track, dynamics, transition curve, standard turnout.