WIT Press


Swarm Intelligence Based State-of-Charge Optimization For Charging Plug-in Hybrid Electric Vehicles

Price

Free (open access)

Paper DOI

10.2495/ESS140231

Volume

206

Pages

11

Page Range

261 - 271

Published

2015

Size

269 kb

Author(s)

I. Rahman, P. M. Vasant, B. S. M. Singh, M. Abdullah-Al-Wadud

Abstract

Transportation electrification has undergone major changes since the last decade. Success of the smart grid with renewable energy integration solely depends upon the large-scale penetration of Plug-in Hybrid Electric Vehicles (PHEVs) for a sustainable and carbon-free transportation sector. One of the key performance indicators in the hybrid electric vehicle is the State-of-Charge (SoC), which needs to be optimized for the betterment of charging infrastructure using stochastic computational methods. In this paper, a newly emerged accelerated particle swarm optimization (APSO) technique was applied and compared with standard Particle swarm optimization (PSO), considering charging time and battery capacity. Simulation results obtained for maximizing the highly non-linear objective function indicate that APSO achieves some improvement in terms of best fitness and computation time.

Keywords

Plug-in Hybrid Electric Vehicles, charging infrastructures, optimization, swarm intelligence, smart grid, battery capacity, State-of-Charge, charging efficiency, particle swarm optimization, accelerated particle swarm optimization