Introduction to Heat Transfer

Bengt Sundén
Lund University, Sweden
Contents

Nomenclature xi
Preface xv

Introduction 1

1 Heat conduction 3
 1.1 General theory ... 3
 1.2 Analogy with electric current 4
 1.3 Heat conduction equation for an isotropic material 5
 1.4 Heat conduction equation in cylindrical coordinates 7
 1.5 Heat conduction equation in spherical coordinates 7
 1.6 Boundary conditions for heat conduction problems 8
 1.7 Anisotropic material 9
References .. 9

2 Thermal conductivity 11
 2.1 Introduction .. 11
 2.2 Gases ... 13
 2.3 Solid substances .. 15
 2.4 Liquids .. 20
 2.5 Influence of pressure on the thermal conductivity 21
References .. 22
Further reading ... 22

3 Steady heat conduction 23
 3.1 Introduction .. 23
 3.2 Heat conduction across a plane wall 23
 3.3 Heat conduction across circular tubes and layers 25
 3.4 Heat conduction in a spherical layer 26
 3.5 Critical insulation thickness 27
 3.6 Plane wall with heat sources (internal heat generation) .. 29
 3.7 Circular rod (or wire) with internal heat generation 30
3.8 Finned heat transfer surfaces 31
3.9 Application of the fin efficiency \(\varphi \) in engineering calculations .. 45
3.10 Limitations in the presented fin theory 46
3.11 Buried electrical cables and hot water pipes 46
References .. 52
Further reading .. 53

4 Unsteady heat conduction .. 55
4.1 Introduction .. 55
4.2 Bodies with very high thermal conductivity 55
4.3 Infinite plate with moderate thermal conductivity 56
4.4 Infinite long circular cylinder or cylinder with insulated end surfaces ... 64
4.5 Transient radial heat conduction in a sphere 67
4.6 Graphical representation of the amount of heat flow 67
4.7 Two- and three-dimensional solutions 67
4.8 Semi-infinite bodies .. 73
References .. 76

5 Heat conduction with moving boundaries 77
5.1 Introduction .. 77
5.2 Solidification process where the solid phase has negligible heat capacity 77
5.3 Melting and solidification taking heat capacity into account .. 78
References .. 81

6 Convection—general theory .. 83
6.1 Introduction .. 83
6.2 Continuity equation (mass conservation equation) 84
6.3 Navier–Stokes’ equations 85
6.4 Derivation of the temperature field equation 88
6.5 Basic equations in cylindrical coordinates 90
6.6 Boundary layer equations for the laminar case 91
6.7 Dimensionless groups and rules of similarity 94
References .. 96

7 Similarity solutions for laminar boundary layer flow 97
7.1 Introduction .. 97
7.2 Derivation of flow and temperature distribution equations .. 97
7.3 Results for the flow and temperature fields 101
7.4 The wall shear stress and the heat transfer coefficient 104
7.5 Analytical expressions for the influence of the Prandtl number ..106
7.6 The Stanton number108
7.7 The constant c in $U = cx^m$108
7.8 Linear superposition109
7.9 Blowing and suction at the surface110
7.10 Temperature distribution and heat transfer coefficient when blowing or suction occur at the surface111
7.11 Physical properties ..113
7.12 Local similarity ...114
References ...114

8 Forced convection in channels—laminar case 117
8.1 Introduction ..117
8.2 Flow conditions at the entrance region of channels117
8.3 Transition to turbulent flow118
8.4 Circular pipes or tubes119
8.5 Entrance length in circular pipes (tubes)119
8.6 The pressure drop over the entrance length119
8.7 The pressure drop for fully developed flow119
8.8 Heat transfer for a circular pipe (tube)121
8.9 Heat transfer for noncircular channels130
8.10 Heat transfer when the velocity field is not fully developed ... 130
8.11 Final remarks ...131
References ...131

9 Forced convection—turbulent flow 133
9.1 Introduction ..133
9.2 Properties of turbulence133
9.3 Methods of analysis134
9.4 About length scales in a turbulent flow134
9.5 The origin of turbulence135
9.6 Equations of motion for turbulent flow135
9.7 Temperature field equation for turbulent flow140
9.8 Boundary layer equations for turbulent flow141
9.9 Turbulent viscosity and turbulent diffusivity142
9.10 Reynolds’ analogy ...143
9.11 The velocity profile in a turbulent boundary layer and in pipe flow144
9.12 Determination of the shear stress coefficient150
9.13 Improvements of Reynolds’ analogy155
9.14 Formulas for determination of the heat transfer coefficient for turbulent flow 155
9.15 Stanton number for pipe flow157
9.16 Dimensionless or universal temperature profile158
9.17 Turbulence modeling160
References161

10 Natural convection 163

10.1 Introduction ..163
10.2 Natural convection along vertical surfaces163
10.3 Horizontal circular cylinders174
10.4 Natural convection for vertical surfaces when the wall heat flux is prescribed ...176
10.5 Reference temperature176
10.6 Natural convection in enclosures176
10.7 More than two layers180
10.8 Summary ...181
References182

11 Forced convective heat transfer for bodies in external flow 183

11.1 Introduction ..183
11.2 Flow field around a circular cylinder (tube) in cross flow ..183
11.3 Convective heat transfer from a circular cylinder (tube)......188
11.4 Tube bundles191
11.5 Pressure drop calculations for a tube bundle in cross flow ..193
11.6 Heat transfer from spheres194
References195

12 Thermal radiation 197

12.1 Introduction ..197
12.2 Physical mechanism197
12.3 Properties of thermal radiation198
12.4 Blackbody radiation199
12.5 Radiation from nonblackbodies203
12.6 Radiation intensity205
12.7 Angle factor, view factor, or shape factor207
12.8 Radiative exchange between blackbodies211
12.9 Radiative exchange between nonblackbodies212
12.10 Simple example ...213
12.11 Gas radiation ...214
12.12 Mean beam length, equivalent beam length216
12.13 Radiative heat exchange between a gas and a room with black walls ...217
References220
13 Condensation

13.1 Introduction .. 221
13.2 General statements 221
13.3 Film condensation along a vertical surface 221
13.4 The Reynolds number 225
13.5 Improvements of the Nusselt film theory for condensation ... 226
13.6 Film condensation on the outer surface of a horizontal tube and horizontal tube bundles 226
13.7 Condensation inside tubes 227
13.8 Influence of noncondensable gases 229
13.9 Dropwise condensation 229
References .. 230
Further reading .. 231

14 Boiling and evaporation

14.1 Introduction .. 233
14.2 General .. 233
14.3 Nukiyama’s experiment and the so-called boiling curve 234
14.4 Description of the boiling curve 235
14.5 Temperature distribution in the liquid phase for saturated pool boiling 237
14.6 Nucleate boiling .. 238
14.7 Film boiling .. 247
14.8 Minimum heat flux, \(q_{\text{min}} \) 248
14.9 Influence of various parameters on the boiling curve 248
14.10 Forced convective boiling for immersed bodies 249
14.11 Forced convective boiling in tubes 250
14.12 Some definitions and relations for two-phase flows 253
14.13 Pressure drop for two-phase flow 254
14.14 Heat transfer and temperature distributions 256
14.15 Additional correlations 260
14.16 Maximum heat flux 261
References .. 261
Further reading .. 262

15 Heat exchangers

15.1 Introduction .. 263
15.2 Classification of heat exchangers 263
15.3 The overall heat transfer coefficient 271
15.4 The LMTD method for analysis of heat exchangers 272
15.5 The \(\varepsilon \)–NTU method for analysis of heat exchangers 278
15.6 Condensers and evaporators (boilers) 283
15.7 Compact heat exchangers 283
15.8 Shell-and-tube heat exchangers 287
15.9 Plate heat exchangers 292
15.10 Regenerative heat exchangers 294
References ... 297
Further reading ... 298

Addendum 1 Derivation regarding unsteady heat conduction for semi-infinite bodies 299
Addendum 2 Derivation of the complete temperature field equation 303
Addendum 3 Heat transfer at high velocities 309
Addendum 4 Collection of problems in heat transfer 315

Index 341
Nomenclature

\begin{itemize}
\item \(A\) \hspace{1em} area \([\text{m}^2]\)
\item \(a\) \hspace{1em} thermal diffusivity \([\text{m}^2/\text{s}]\), (eq. (4.5))
\item \(a_\lambda\) \hspace{1em} monochromatic absorption coefficient \([-]\), (eq. (12.48))
\item \(\text{Bi}\) \hspace{1em} Biot number \([-]\), (eq. (4.5))
\item \(\text{Bo}\) \hspace{1em} boiling number \([-]\), (eq. (14.69))
\item \(b\) \hspace{1em} length, thickness \([\text{m}]\)
\item \(C\) \hspace{1em} heat capacity flow rate \([\text{W/K}]\), (eq. (15.4))
\item \(C_D\) \hspace{1em} drag coefficient \([-]\), (eq. (11.1))
\item \(C_F\) \hspace{1em} shear stress coefficient \([-]\), (eq. (7.30))
\item \(C_p\) \hspace{1em} pressure coefficient \([-]\), Fig. 11.3
\item \(c\) \hspace{1em} specific heat \([\text{J/(kg K)}]\)
\item \(c\) \hspace{1em} propagation velocity for electromagnetic wave motion \([\text{m/s}]\)
\item \(c_p\) \hspace{1em} specific heat at constant pressure \([\text{J/(kg K)}]\)
\item \(D\) \hspace{1em} diameter \([\text{m}]\)
\item \(D_h\) \hspace{1em} hydraulic diameter \([\text{m}]\), (eq. (8.8))
\item \(d_{ij}\) \hspace{1em} devi\c{a}tric stress tensor \([\text{N/m}^2]\), (eq. (6.12))
\item \(E\) \hspace{1em} energy \([\text{J}]\)
\item \(\dot{E}\) \hspace{1em} energy per time unit \([\text{W}]\)
\item \(E\) \hspace{1em} emitted radiation energy, emissive power \([\text{W/m}^2]\)
\item \(E\) \hspace{1em} voltage \([\text{V}]\)
\item \(E_B\) \hspace{1em} emitted black body radiation \([\text{W/m}^2]\), (eq. (12.10))
\item \(E_\lambda\) \hspace{1em} emitted monochromatic radiation emissive power \([\text{W/(m}^2\text{m)}]\)
\item \(e\) \hspace{1em} specific energy \([\text{J/kg}]\)
\item \(e_{ij}\) \hspace{1em} rate of strain tensor \([1/\text{s}]\), (eq. (6.15))
\item \(F\) \hspace{1em} force \([\text{N}]\)
\item \(F\) \hspace{1em} correction factor \([-]\)
\item \(F_{ij}\) \hspace{1em} angle factor, view or shape factor \([-]\), (eq. (12.26))
\item \(F_0\) \hspace{1em} Fourier number \([-]\), (eq. (4.5))
\item \(F_r\) \hspace{1em} Froude number \([-]\), (eq. (14.56))
\item \(f\) \hspace{1em} Darcy friction factor \([-]\), (eq. (8.6))
\item \(f_s\) \hspace{1em} vortex frequency \([\text{s}^{-1}]\), (eq. (11.2))
\item \(G\) \hspace{1em} incident radiation \([\text{W/m}^2]\), (eq. (12.5))
\item \(G\) \hspace{1em} average mass velocity \([\text{kg/(m}^2\text{s)}]\)
\item \(\text{Gr}\) \hspace{1em} Grashof number \([-]\), (eq. (10.4))
\end{itemize}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr^*</td>
<td>modified Grashof number [–], (eq. (10.51))</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>gravity constant [m/s²]</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>enthalpy [J]</td>
<td></td>
</tr>
<tr>
<td>\dot{H}</td>
<td>enthalpy per time unit [W]</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>specific enthalpy [J/kg]</td>
<td></td>
</tr>
<tr>
<td>h_{fg}</td>
<td>latent heat [J/kg]</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>radiation intensity [W/m² sr], (eq. (12.20))</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>current [A]</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>momentum [kg m/s]</td>
<td></td>
</tr>
<tr>
<td>i, j, k</td>
<td>unit vectors</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>radiosity [W/m²], (eq. (12.5))</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>Jakob number, (eq. (13.26))</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>Colburn factor [–], $St \cdot Pr^{2/3}$</td>
<td></td>
</tr>
<tr>
<td>K_c</td>
<td>contraction coefficient [–], (eq. (15.37))</td>
<td></td>
</tr>
<tr>
<td>K_e</td>
<td>expansion coefficient [–], (eq. (15.37))</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>length, thickness [m]</td>
<td></td>
</tr>
<tr>
<td>L_i</td>
<td>entrance length [m], (eq. (8.4))</td>
<td></td>
</tr>
<tr>
<td>$LMTD$</td>
<td>logarithmic mean temperature difference [K], [°C], (eq. (15.9))</td>
<td></td>
</tr>
<tr>
<td>l_m</td>
<td>mixing length [m], (eq. (9.51))</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>molecular weight [kg/kmol]</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>mass [kg]</td>
<td></td>
</tr>
<tr>
<td>\dot{m}</td>
<td>mass flow rate [kg/s]</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>number of tube rows</td>
<td></td>
</tr>
<tr>
<td>NTU</td>
<td>number of transfer units [–], (eq. (15.17))</td>
<td></td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number [–], (eq. (6.62))</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>number of molecules per unit volume</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>efficiency parameter [–], (eq. (15.12))</td>
<td></td>
</tr>
<tr>
<td>P_{R}</td>
<td>reduced pressure [–]</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number [–], (eq. (6.50))</td>
<td></td>
</tr>
<tr>
<td>Pr_t</td>
<td>turbulent Prandtl number [–], (eq. (9.33))</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>pressure [Pa]</td>
<td></td>
</tr>
<tr>
<td>p'</td>
<td>fluctuating pressure [Pa]</td>
<td></td>
</tr>
<tr>
<td>\bar{p}</td>
<td>time averaged pressure [Pa]</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>heat [J]</td>
<td></td>
</tr>
<tr>
<td>\dot{Q}</td>
<td>heat transfer rate [W]</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>heat flux [W/m²]</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>radius [m]</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>gas constant [J/(kg K)]</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>heat capacity flow rate ratio [–], (eq. (15.13))</td>
<td></td>
</tr>
<tr>
<td>R_p</td>
<td>surface roughness [μm]</td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number [–], (eq. (6.60))</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>radius [m]</td>
<td></td>
</tr>
<tr>
<td>r_s</td>
<td>latent heat melting [J/kg]</td>
<td></td>
</tr>
<tr>
<td>S_L</td>
<td>lateral tube pitch [m]</td>
<td></td>
</tr>
</tbody>
</table>
\(S_T \) longitudinal tube pitch [m]

\(S_r \) Strouhal number [–], (eq. (11.2))

\(S_T \) Stanton number [–], (eq. (7.42))

\(T \) absolute temperature [K]

\(T^+ \) dimensionless temperature [–], (eq. (9.82))

\(T_R \) thermal resistance [K/W], (eq. (15.1))

\(t \) temperature [°C]

\(t' \) fluctuating temperature [°C]

\(\bar{t} \) time averaged temperature [°C]

\(U \) internal energy [J]

\(\dot{U} \) internal energy per time unit (effekt) [W]

\(U \) (mean) velocity [m/s]

\(U_\infty \) freestream velocity [m/s]

\(U \) overall heat transfer coefficient [W/(m² K)], (eq. (15.1))

\(u, v, w \) local velocity [m/s]

\(u', v', w' \) fluctuating velocity [m/s]

\(\bar{u}, \bar{v}, \bar{w} \) time averaged velocity [m/s], (eq. (9.4))

\(u^+ \) dimensionless velocity [–]

\(u_{FS} \) fictious liquid velocity [m/s], (eq. (14.43))

\(u_{GS} \) fictious gas velocity [m/s], (eq. (14.44))

\(u_m \) mean velocity [m/s]

\(u_f, u^* \) friction velocity [m/s]

\(V \) volume [m³]

\(X \) coordinate [m]

\(X \) Martinelli parameter [–], (eq. (14.52))

\(X_F \) flowing mass fraction [–], (eq. (14.40))

\(X_S \) static mass fraction [–], (eq. (14.41))

\(x, y, z \) coordinates [m]

\(y^+ \) dimensionless coordinate perpendicular to a solid surface [–], (eq. (9.45))

\(W \) work [J]

\(\dot{W} \) work per time unit [W]

\(W_e \) Weber number [–], (eq. (14.23))

\(Z \) width, length [m]

\(\alpha \) heat transfer coefficient [W/(m² K)], (eq. (1.23))

\(\alpha \) absorptance [–], (eq. (12.3))

\(\beta \) thermal expansion coefficient [1/K]

\(\beta \) angle [rad]

\(\gamma \) ratio of specific heats, \(c_p/c_v \) [–]

\(\delta \) angle [rad]

\(\delta \) boundary layer thickness [m]

\(\delta_{ij} \) Kronecker’s delta [–], (eq. (6.12))

\(\varepsilon \) emissivity [–], (eq. (12.11))

\(\varepsilon \) void [–], (eq. (14.39))

\(\varepsilon \) efficiency [–], (eq. (15.14))
εₘ turbulent kinematic viscosity [m²/s], (eq. (9.31))
ε₉ turbulent diffusivity [m²/s], (eq. (9.32))
η dimensionless coordinate [-]
η fin effectiveness [-], (eq. (3.48))
θ dimensionless temperature [-]
θ angle [rad]
θ thermal length [-], (eq. (15.43))
θ temperature [°C]
κ von Karmans constant [-], (eq. (9.51))
λ parameter [-]
λ thermal conductivity [W/(m K)], (eq. (1.1))
λ wavelength [m]
λ₁ mean free path for molecular motion [m]
μ dynamic viscosity [kg/(m s)]
ν kinematic viscosity [m²/s]
ρ density [kg/m³]
ρ reflectance [-], (eq. (12.3))
ρ resistivity [Ω m]
σ Stefan-Boltzmann constant [W/(m² K⁴)], (eq. (12.10))
σ shear stress [N/m²]
σ surface tension [N/m]
σ electric conductivity [1/(Ω m)]
σ area ratio [-], (eq. (15.35))
τ time [s]
τ transmittance [-], (eq. (12.3))
φ angle [rad]
ϕ fin efficiency [-], (eq. (3.49))
Φ radiation energy [W/m²], (eq. (12.21))
ψ stream function [s⁻¹], (eq. (10.21))
ω solid angle [sr], (eq. (12.16))

Index
B bulk, blackbody
C convective boiling
f at film temperature, fluid
g gas
i inner
KK nucleate boiling
m mean
o outer
TF two-phase
w wall
λ monochromatic
∞ freestream
Preface

This book aims as an introduction of heat transfer at undergraduate and graduate levels. Compared to other similar textbooks it differs significantly as it is much more comprehensive in describing the thermal conductivity of various substances, providing deeper analysis of fin heat transfer, and it includes buried pipes. For convective heat transfer the relation to fluid mechanics is much more highlighted. The turbulent convection, evaporation and heat exchanger chapters are all more comprehensive than other general heat transfer textbooks available. The textbook has been used for exchange students and PhD students for several years. The text has been developed and improved over the years.

At the end of the book a number of problems in heat transfer can be found. These can be solved by the methods presented in the various chapters.

Lund in September 2011

Bengt Sundén
Professor in Heat Transfer
Department of Energy Sciences
Lund University