Environmental Innovation in China
Main contributors to the book

Liu, Xielin, Professor
Graduate University of Chinese Academy of Sciences

David Strangway, Former President
The University of British Columbia

Zhou Yun, Research Fellow
Chinese Research Academy of Environmental Sciences

Song Xiujie, Research Fellow
Beijing Research Academy of Environmental Sciences

Zhu Chaowei, Research Fellow
Chinese Research Academy of Environmental Sciences

Larry Sproul, Senior Researcher
The University of British Columbia

Case contributors

Dai Hongyi
Graduate University of Chinese Academy of Sciences

Jiang Jiang
Institute of Industrial Economics, State Development and Reform Committee

Jian Mingjue
Beijing Committee of Development and Reform

Chen Dajun
Beijing Research Academy of Environmental Sciences

Wu Jieyun
Chinese Research Academy of Environmental Sciences

Shen Xiaoyue
Sino-Japan Friendship Center for Environmental Protection

Yan Jing
Beijing Research Academy of Environmental Sciences

Hu Jingnan
Chinese Research Academy of Environmental Sciences
Environmental Innovation in China

Liu Xielin
Graduate University of Chinese Academy of Sciences, China

David Strangway
The University of British Columbia, Canada

Feng Zhijun
China Democratic League, China
Contents

Preface xi
A National Environmental Innovation Action Plan – Executive Summary xiii
Task Force xv

Chapter 1. Introduction 1
1.1 Innovation, environment, and development: challenge and opportunities 1
1.2 China at a transformative point on environment and development 4
1.3 How an environmental innovation strategy can help 8
1.4 Innovation challenges 8
1.5 Conclusion 10

Chapter 2. Current state of China’s environmental protection 11
2.1 Brief history of accomplishments and failures related to innovation 11
2.2 Achievements of governmental programs and projects 11
2.3 Diffusion of innovative technology has boosted the level of environmental protection 16
2.4 Desulfurization 16
2.5 China’s medium- to long-term science and technology plan 16
2.6 Case histories 18
2.7 Conclusion 18

Chapter 3. Technology innovation for environment and sustainable development 19
3.1 Environment and competitiveness 19
3.2 Environment and economic growth 20
3.3 The innovation process 21
3.4 Basic research 22
3.4.1 Biofuels 24
3.4.2 Photovoltaics 24
3.4.3 Quantum computing 25
3.5 Applied research 27
3.6 Pre-commercial research and new company creation 27
3.7 Demonstration and niche deployment 29
3.8 Widespread deployment/diffusion 30
3.9 Innovation ecosystem: another look at the innovation process 30
3.10 Global learning networks 30
3.11 Enterprise forum 31
 3.11.1 Multinational enterprises and investment 32
 3.11.2 Creation of innovative SMEs 36
3.12 Venture capital in the field of clean technology 36
3.13 China’s environmental and sustainable development paradigm: the “China Advantage Model” 39
3.14 Creative mindset 39
3.15 Selected needs and technology for the future 40
 3.15.1 Clean and efficient transport technologies 41
 3.15.2 Solar cells, photovoltaics, solar thermal technology, and enhanced geothermal systems 41
 3.15.3 Wind power and new nuclear power systems 42
 3.15.4 Carbon capture and sequestration, integrated gasification combined cycle and clean coal 42
 3.15.5 Desalination of saline water 43
 3.15.6 High-efficiency buildings, infrastructure, and conservation 43
 3.15.7 Ecological conservation, reforestation, and grassland development 44
 3.15.8 Key technological aspects in the development of the recycling economy 48
 3.15.9 Biofuels and bioproducts 49
3.16 Conclusions 49

Chapter 4. Environmental innovation system of China 51
 4.1 University and government research institutes 51
 4.2 Domestic enterprises 52
 4.3 Industry–academic linkage 53
 4.4 Role of the government 54
 4.5 Global linkages 55
 4.6 Conclusion 56

Chapter 5. Regulation, standards, and enforcement 57
 5.1 Need for enforcement of regulations and standards to drive innovation 57
 5.2 Creating a market for clean technology 58
 5.3 Leapfrogging and standards 62
 5.4 Enforcement 66
 5.4.1 The US Toxic Release Inventory (TRI): a strategy to promote citizen involvement 67
 5.4.2 China’s GreenWatch program 67
 5.5 International standards 68
Chapter 6. Public participation and environmental innovation

6.1 Why public participation is needed
6.2 Public can play a role
6.3 How can the public participate?
 6.3.1 Public accessing information
 6.3.2 Public hearing and supervision
 6.3.3 Give full play to social communities, NGOs, and volunteers
6.4 Education and training and publicity of the public
6.5 Conclusion

Chapter 7. Conclusions and recommendations

7.1 Technology innovation for environmental protection and sustainable development
 7.1.1 Strengthen China’s basic research capacity
 7.1.2 Selected fields requiring innovation and funding
 7.1.3 Create environmental innovation support networks and industry sector research institutes
 7.1.4 Public procurement
 7.1.5 Greatly upgrading SME’s innovation capability
 7.1.6 Innovation financing must be available
 7.1.7 International cooperation/global learning networks
 7.1.8 Intellectual property rights and leapfrogging
 7.1.9 Create experimental innovation laboratories
7.2 Regulations, standards, and enforcement
 7.2.1 Create the market
 7.2.2 Create a national environment information system
 7.2.3 Improve policy coordination between various departments and institutions
 7.2.4 Give local governments incentives to become best performers
7.3 Public participation
 7.3.1 Increase public awareness
 7.3.2 Public involvement in local environmental protection
 7.3.3 Make civil society a key actor in the environmental innovation system
 7.3.4 More emphasis on innovation in the education system

Appendix 1. Introduction to the grand challenges for engineering

Appendix 2. Innovation and environment-friendly society construction – new energy development in Baoding: China Power Valley
 A2.1 Urban and economic development in Baoding
 A2.2 New energy industry development in Baoding
A2.3 Key factors underlying Baoding new energy industry development
A2.3.1 Government support
A2.3.2 Improvement of the Industrial Chain
A2.3.3 Drivers of Technology Innovation
A2.3.4 Comprehensive Cooperation with Schools and Academies
A2.3.5 Brain Power Development
A2.4 New Pollution Problems in New Energy Industry
A2.5 Conclusions and Discussions

Acknowledgements

Appendix 3. Innovative and environment-friendly regional development: lessons from Ningbo
A3.1 Background
A3.2 Ningbo social and economic highlights
A3.3 Development and its impact on environment
A3.4 Ningbo – open environment innovation system
A3.4.1 Government is the leader and supervisor in environment protection
A3.4.2 Public participation in environment protection and innovation activities is an important guarantee
A3.4.3 Introduction of international know-how and environmental technologies are important external support for environment protection and innovation
A3.4.4 Companies are the key players in environment protection and innovation
A3.5 Summary

Appendix 4. Innovative and environment-friendly development: implications from Wuhai
A4.1 Wuhai social and economic highlights
A4.2 Wuhai environment protection
A4.3 Innovation, development, and environment protection: implications from Wuhai
A4.3.1 Regulatory control and environment protection
A4.3.2 Economic development and environmental protection
A4.3.3 Technology innovation and environmental protection
A4.3.4 Incentives and environmental protection
A4.3.5 Administration division and environmental protection

Appendix 5. The status of China’s photovoltaic industry
A5.1 The status of photovoltaics in China
A5.1.1 The status of the first part of the photovoltaic industrial chain in China
A5.1.2 The status of the middle part of China’s solar photovoltaic industry
A5.1.3 The status of the final parts of China’s solar photovoltaic industry
A5.2 Analyzing the opportunities and the challenges of China’s photovoltaic industry from the perspective of industrial catching up
A5.2.1 Technical factors
A5.2.2 Market factors
A5.2.3 Government support
A5.2.4 Use of external resources
A5.2.5 The capabilities of the enterprises

Appendix 6. Control over sulfur dioxide pollution from thermal power plants
A6.1 The current status of sulfur dioxide emission in China
A6.2 Regulations, policies, and standard systems for control over sulfur dioxide pollution in China
A6.3 Efforts of China on sulfur dioxide emission reduction
 A6.3.1 Effective implementation on policies and measures established by relevant Ministries
 A6.3.2 Active measures are taken to strengthen supervision of construction of desulfurization facilities
 A6.3.2.1 Shanxi Province
 A6.3.2.2 Zhejiang Province
 A6.3.3 Power grid groups have increased the enthusiasm of desulfurization
A6.4 Sulfur dioxide pollution treatment technology of thermal power plants and development of desulfurization industry in China
 A6.4.1 Development of new technologies of control over sulfur dioxide pollution
 A6.4.1.1 Localization rate of desulfurization equipment has exceeded 90%
 A6.4.1.2 FGD dominant technology with independent intellectual property rights
 A6.4.1.3 Drastic reduction on desulfurization engineering costs
 A6.4.2 Development of desulfurization industry
 A6.4.3 Construction of desulfurization facilities
A6.5 Critical issues on construction, operation, and management of flue gas desulfurization facilities in thermal power plants
 A6.5.1 Excessive growth of construction of desulfurization facilities and uncovered hidden danger to project quality
 A6.5.2 Few operation unit and improper environmental supervision
 A6.5.2.1 Environmental supervision values environment assessment but downplays processes and follow-up supervision
 A6.5.2.2 The projects that have been completed are not accepted and put into use in accordance with the regulations
 A6.5.2.3 The desulfurization facilities that have been put into operation are not in continuous operation, and units stop from time to time
 A6.5.3 The lack of effective policy measures and means of the environmental supervision
 A6.5.3.1 Imperfect policy and standard systems
A6.5.3.2 The smoke on-line monitoring devices fail to perform and the monitoring of desulfurization facilities has not been proper
A6.5.3.3 Access to grid priority for the desulfurization price subsidy mechanisms still needs improvement and implementation
A6.6 Recommendations

Appendix 7. Vehicle pollution control
A7.1 City and traffic planning
A7.2 Emission control of in-use vehicles
A7.3 New vehicle emission control
A7.4 Improvement of fuel quality
A7.5 Clean automobile technology
A7.6 Economic measures

References

List of Acronyms
Preface

In 2008, the China Council for International Cooperation on Environment and Development established a special task force on Building an Environmentally-friendly Society through Innovation. The goal is to explore how China can find a new development model based on environmental innovation. Co-chairs of the task force are: David Strangway, Former President, the University of British Columbia and Feng Zhijun, Counselor, the State Council. Task Force Members are: Meng Wei, President, Chinese Research Academy of Environmental Sciences; Liu Xielin, Professor, Graduate University of Chinese Academy of Sciences; Wang Chunfa, Professor, China Association for Science and Technology; Xue Lan, Professor, School of Public Policy and Management, Tsinghua University; Kelly Gallagher, Director, Energy Technology Innovation Project, John F. Kennedy School of Government, Harvard University; Granger Morgan, Professor, Carnegie Mellon University; Tom Preststulen, Executive Vice President, Corporate Governor Asia, Elkem.

In 2008, members of the international task force held two workshops in Vancouver and Oslo separately. Later, contributors of the book, led by Liu Xielin and D.Strangway, formed a team and served as the main writers for the report and this book.

We acknowledge the Bureau of Environmental Protection, Ningbo city, Zhejiang Province, Ningbo Association of Science and Technology for arranging for us to visit Bailun Power Plant, Zhenhai Chemical Refinery, China Petrochemical Corporation (Sinopec Group) from March 13 to 15, 2008.

We also thank the Bureau of Environmental Protection of Wuhai, Wu Hai Power Plant, Subsidiaries of Shenhua group in Wuhai in Inner Mongolia to allow us to conduct academic interviews from June 12 to 14, 2008.

From September 28-30, we visited the Development and Reform Committee, Bureau of Science and Technology, Bureau of Environmental Protection, High-tech Zone in Baoding city. We also interviewed two green energy companies: Yingli in photovoltaic industry and Huiteng in wind power industry. Without their help, we could not finish the case on Baoting city.

Lastly, we would take the opportunity to thank Mr Guo Jing and Li Yong from the secretariat office of CCICD, it is their kind and valuable support that made the project and book possible.

Liu, Xielin and David Strangway
Beijing, 2012
A National Environmental Innovation Action Plan

Executive Summary

China has both the capacity and the need to become a global leader in sustainable development and innovation in environmental technology.

China has had dramatic and sustained industrial, economic and social development over the past 30 years. Prompt and forceful response to the devastating Sichuan earthquake and the spectacular staging of the 2008 Summer Olympics are clear illustrations of the remarkable transformation that is taking place.

However, economic development has come at a cost. Pollution to air, water and land is having a very serious impact on the health and well-being of the people of China and on the ecosystems of China. The need for China to reduce its emissions is abundantly clear. Many steps are being taken and the problem is fully recognized by China’s leadership. Targets on reducing intensity of emissions on a per GDP basis have been set. However, what ultimately matters is not per GDP (or per capita) emission, but the levels of pollution to which people and ecosystems are exposed. Reduction targets of pollutants on an absolute basis must be established. If these are to be reduced from today’s levels to a healthy level, a new transformation will be needed in which the creative and innovative potential of the people and institutions is further developed!

In this report we review the science and technology system of China and we examine the many steps under way to improve its ability to support innovative and cost effective environmental clean up. We review what drives innovation and the conditions necessary to develop an innovative society. The continuum from basic research in science and engineering to applied research to precompetitive research and new company creation to demonstration to deployment and the interaction between these elements is moving at a dramatic pace. This can be described as an Innovation Ecosystem since all elements interact. The opportunity for technology innovation has never been greater as we discuss in this report.

Science and technology are moving ahead globally at a dramatic pace, creating unique opportunities for solving environmental problems.

We recommend the establishment of a National Environmental Innovation Action Plan. The elements of this plan are discussed in this report and cover the elements of the innovation process from research and development (R&D) to deployment. MEP needs to be strengthened to support this plan.

We know that innovation requires a firm market demand. In the environmental area, such
demand will not develop or persist without strong regulatory frameworks. Clear standards and enforced regulations created equitably by government are what create the market for environmental innovation.

Without strong, clear, stable, and uniformly-enforced regulations and standards, there is no market and hence no incentive for investment in development and wide deployment of innovative environmental technologies.

To achieve a more effective nationwide regulatory environment and to bolster public participation, we urge the creation of a National Environment Information System (NEIS). NEIS would be managed by the new Ministry of Environmental Protection (MEP), who would be responsible for collecting, processing, and reporting pollution in an open format accessible to all.

It will of course be necessary for government to fund the appropriate elements of the National Environmental Innovation Action Plan.

In addition to creating and supporting the NEIS, there are a number of steps that can be taken to strengthen China’s environmental capacity. China is in a position to develop a globally competitive capacity in the rapidly developing area of clean technology (CT). There are many dimensions identified in this report under the three themes:

1. **Technology Innovation** for environmental protection and sustainable development
2. **Regulations, Standards, and Enforcement**, and
3. **Public Participation**.

Technology Innovation proposes a number of approaches. There is a need to strengthen the various elements of the innovation process as it relates to environment; continue to strengthen basic research; create competence centres; develop industry sector research institutes; create Environmental Innovation Support Networks to assist SMEs; develop incentives to meet energy efficiency standards; funds for international cooperation; support academic-industry linkages; institute internationally recognized prizes; and develop the circular economy.

Regulations, Standards, and Enforcement are central to innovation. Within the context of the NEIS, the cost of compliance must become less than the cost of non-compliance. National and international standards need to be set and enforced.

Public Participation of citizens and local NGOs is vital in addressing the immediate impacts of pollution which are widely understood as occurring most critically at the local and regional levels. While steps are being taken to strengthen such local involvement, much more needs to be done. China needs to stimulate, empower and mobilize citizens at the local and regional levels to act in the interest of resolving the environmental problems of their communities. This can be reinforced in many ways including education and public awareness campaigns. The power of the citizens to act will be greatly strengthened by access to the independent National Environment Information System.

Much has been done. Much remains to be done to release the innovation capacity of China to provide an example of sustainable development which can be a model to the world. Continuing to grow the GDP, while decreasing pollution through innovations in technology, in institutions, and in society, must be the objective.
Task Force Co-Chair

David Strangway, Former President
The University of British Columbia, Canada

Feng Zhijun, Counselor
The State Council, China

Task Force Members

Meng Wei, President
Chinese Research Academy of Environmental Sciences

Liu Xielin, Professor
Graduate University of Chinese Academy of Sciences

Wang Chunfa, Professor
China Association for Science and Technology

Xue Lan, Professor
School of Public Policy and Management, Tsinghua University

Kelly Gallagher, Director
Energy Technology Innovation Project
John F. Kennedy School of Government, Harvard University

Granger Morgan, Professor
Carnegie Mellon University

Tom Preststulen, Executive Vice President
Corporate Governor Asia, Elkem

Drafting Team Members

David Strangway, Former President
The University of British Columbia

Liu Xielin, Professor
Graduate University of Chinese Academy of Sciences

Zhou Yun, Associate Professor
Chinese Research Academy of Environmental Sciences

Song Xiujie, Professor
Beijing Municipal Research Institute of Environmental Protection

Zhu Chaowei, Associate Professor
Chinese Research Academy of Environmental Sciences

Task Force Advisors

Larry Sproul
Dai Hongyi
Jiang Jiang
Jian Mingjie
Cheng Dajun
Wu Jieyun
Shen Xiaoyue
Yan Jing
Hu Jingnan