Soft Computing in Water Resources Engineering
Soft Computing in Water Resources Engineering

Artificial Neural Networks, Fuzzy Logic and Genetic Algorithms

G. Tayfur
Izmir Institute of Technology, Turkey
To my children

Sümeyra Nur
Beyza Nur
Tarik Meliksah
Dr Gökmen Tayfur is a professor of Civil Engineering at Izmir Institute of Technology, Turkey. He graduated from the Department of Civil Engineering, Istanbul Technical University in 1985. He had continued his MSc degree program in the same department from 1985 to 1987. Upon rewarded a graduate studies in the USA by the Turkish Ministry of Education, he had completed his MSc and PhD degrees in the Department of Civil Engineering, University of California at Davis in 1990 and 1993, respectively. He had worked as a post doctoral researcher in the same department and in the department of LAWR in the same university from 1993 to 1995. Since 1995 he has been a faculty member in the Civil Engineering Department, Izmir Institute of Technology, Izmir, Turkey. He had spent 2004–2005 at Louisiana State University and 2007–2008 at the University of Mississippi as a visiting scholar. He has had published several book chapters, more than 50 national and international conference papers and over 40 scientific SCI journal papers. His research interest can be summarized as: Mathematical modeling, surface and subsurface flows, rainfall-runoff induced erosion, sediment transport, solute transport, chemical transport in surface and subsurface flows, application of artificial intelligence methods (ANN, Fuzzy Logic, GA) in water resources engineering problems, and river morphology.
Contents

Preface ... xv

PART I – ARTIFICIAL NEURAL NETWORKS

Chapter 1 – Introduction to Artificial Neural Networks .. 3

1.1 General View .. 3
1.2 Biological Neuron ... 4
1.3 Artificial Neuron ... 5
1.4 Artificial Neural Network .. 6
 1.4.1 History .. 6
 1.4.2 General Properties of ANN .. 7
1.5 ANN Types .. 8
 1.5.1 Architecture ... 8
 1.5.2 Neuro-dynamics ... 9
1.6 ANN versus Other Models 9

Chapter 2 – Artificial Neuron .. 13

2.1 Components of Artificial Neuron .. 13
2.2 Methods for Computing Net Information ... 15
 2.2.1 Summation (P) method .. 16
 2.2.2 Maximum (max) method ... 16
 2.2.3 Minimum (min) method .. 16
 2.2.4 Product (Q) method ... 16
2.3 Activation Functions .. 16
 2.3.1 Linear function ... 17
 2.3.2 Step function .. 17
 2.3.3 Rampage function ... 19
 2.3.4 Gaussian function ... 20
 2.3.5 Sigmoid function ... 20
 2.3.6 Hyperbolic tangent function ... 22
PART II – FUZZY LOGIC ALGORITHM

Chapter 6 – Introduction to Fuzzy Logic Algorithm ... 109

6.1 General View .. 109
6.2 Basic Concept in Fuzzy Logic .. 110
6.3 Fuzzy Systems .. 112

Chapter 7 – Fuzzy Membership Functions, Set Operations, and Fuzzy Relations .. 115

7.1 Fuzzy Membership Functions ... 115
7.2 Fuzzy Set Operations .. 118
 7.2.1 Set representation ... 118
 7.2.2 Set operations ... 119
 7.2.2.1 Union of sets ... 119
 7.2.2.2 Intersection of sets ... 120
 7.2.2.3 Complementary sets ... 122
 7.2.2.4 Subsets .. 122
 7.2.2.5 Operation properties of fuzzy sets ... 124
 7.2.3 Operations unique to fuzzy sets .. 125
 7.2.3.1 Concentration ... 125
 7.2.3.2 Dilation ... 125
 7.2.3.3 Normalization ... 126
 7.2.3.4 Intensification .. 127
 7.3 Fuzzy Relations ... 128

Exercise Questions .. 132

Chapter 8 – Constructing Fuzzy Model ... 135

8.1 Fuzzification ... 135
8.2 Fuzzy Rule Base ... 137
8.3 Fuzzy Inference Engine .. 140
 8.3.1 Inference sub-process .. 140
 8.3.2 Composition sub-process .. 145
8.4 Defuzzification .. 146

Exercise Questions .. 150
Chapter 9 – Fuzzy Model Application in Water Resources Engineering .. 151

9.1 Introduction .. 151
9.2 TSS Prediction .. 152
 9.2.1 Model development .. 154
 9.2.2 Model calibration and application .. 155
9.3 Sheet Sediment Prediction .. 157
 9.3.1 Fuzzy model .. 157
 9.3.2 Physics-based model .. 161
 9.3.3 ANN model ... 163
9.4 Peak Discharge Prediction .. 164
 9.4.1 Experimental data .. 164
 9.4.2 ANN model training and testing ... 164
 9.4.3 FL model calibration and validation .. 164
 9.4.4 KWA model calibration and validation .. 166
9.5 Runoff Hydrograph Simulation .. 168
 9.5.1 ANN model training and testing ... 168
 9.5.2 FL model calibration and validation .. 169
 9.5.3 KWA model calibration and verification ... 170
9.6 Hydrograph Simulation at Watershed Scale ... 171
9.7 Dispersion Prediction .. 172
 9.7.1 Experimental data .. 173
 9.7.2 Regression-based model .. 176
 9.7.3 Fuzzy model .. 177
References .. 179

PART III – GENETIC ALGORITHMS

Chapter 10 – Genetic Algorithms (GAS) .. 185

10.1 Introduction .. 185
10.2 Basic Units of GA ... 186
10.3 GA Operations ... 188
 10.3.1 Forming initial gene pool .. 189
 10.3.2 Evaluating fitness of each chromosome .. 190
 10.3.3 Selection .. 192
 10.3.4 Cross-over operation .. 193
 10.3.4.1 Single cut .. 194
 10.3.4.2 Double cut ... 195
 10.3.4.3 Multiple cut ... 195
 10.3.4.4 Uniform crossing ... 195
 10.3.4.5 Using sub-chromosome ... 195
 10.3.4.6 Reversing ... 196
10.3.5 Mutation

Chapter 11 – Variant of Genetic Algorithm

11.1 Variant of Genetic Algorithms

11.1.1 Responsive perturbation algorithm

11.1.2 Trait-based heterogeneous populations (TbHP)

11.1.3 Trait-based heterogeneous populations plus (TbHP+)

11.2 Test Functions

11.3 Model Testing

Chapter 12 – Genetic Algorithm Model Applications in Water Resources Engineering

12.1 GA Application Problems

12.1.1 Longitudinal dispersion coefficient in natural streams

12.1.2 Hydrograph simulation

12.1.3 Sensitivity analysis

12.1.4 Hydrograph simulation using level data

12.1.5 Mean and bankfull discharge prediction

Appendix

References

Index
Preface

Soft computing methods have relatively a recent history, starting in early 1940s with artificial neural networks (ANNs), 1960s with fuzzy logic (FL), and 1970s with genetic algorithms (GAs). The application of these methods in water resources engineering area is even more recent, starting in early 1990s. Many studies have proven their utility across disciplines, triggering many MSc and PhD research thesis projects. As a result, many students have looked for sources to have a grasp of these methods. This has, in turn, initiated the offerings of many soft computing courses across many departments all over the world. I, myself, got into a research in this area in 2001, offered the first graduate course on soft computing methods in 2003. Since then, many students from Engineering (Material, Environmental, Civil, Mechanical, Chemical, Food, Electronics) Departments, including the Departments of Physics, City Planning, and Architecture, have taken the course. In a short period of time, I believe, such courses would be offered at an undergraduate level as well.

Soft computing algorithms can be employed individually or in conjunction with other numerical, analytical, and empirical models to solve engineering problems. They can produce quick results, making them be more attractive to the practicing engineers and managers. ANNs and GAs are data driven optimization techniques that are not restricted to the constraints of mathematical functions. Fuzzy logic, on the other hand, employs verbal statements in solving problems, thus it is in more line with human thinking. The application problems that are demonstrated in the book compare artificial intelligence methods against numerical, regression-based, empirical, and stochastic methods. These comparative examples would enable readers to qualitatively see the performance and importance of the soft computing methods.

This book can be used as a textbook for engineering students and as well as for the students in other disciplines since the great deal of the book contains
the basics of the aforementioned soft computing methods with illustrative examples. Hydrologists and hydraulic engineers can further benefit from the book since the application problems involve the ones from the water resources engineering field, ranging from prediction of the seepage path in an earthfill dam body to longitudinal dispersion coefficient in natural rivers.

Water resources planning and management has always been an important issue since especially the second half of the 20th century. This period witnessed the theoretical concepts and methodologies development, along with the computational tools and numerical methods. The numerical methods are powerful and can be very effective when detailed data is available. They can provide detailed spatial analysis in three dimensions, including temporal variation. In some cases, however, hydrologists, and hydraulic engineers prefer simple, easy-applicable, user-friendly practical methods and this is exactly what the soft computing methods deliver.

This book is designed as having three basic parts:

1. Artificial neural networks (ANN)
2. Fuzzy logic (FL) algorithm
3. Genetic algorithms (GAs)

Part I consists of five chapters. The first four chapters give the basics of an artificial neural, artificial neural networks, network training and network testing. Chapter 5 contains ANN applications in solving water resources engineering problems of prediction, interpolation, extrapolation, classification, and forecasting.

Part II involves four chapters. Chapters 6, 7, and 8 give details and basics of fuzzy logic, fuzzy membership functions, fuzzy set operations and fuzzy relations, and the components (fuzzification, fuzzy rule base, inferencing, and defuzzification) of fuzzy model. Chapter 9 presents FL applications in solving several water resources engineering problems such as the predictions of total suspended sediment (TSS), sheet sediment, peak discharge, runoff hydrograph, and dispersion.

Part III consists of three chapters. Chapters 10 and 11 give basics of GA and its variants. Chapter 12 presents several applications of GAs in water resources engineering field.

I would like to deeply thank Prof. Dr Zekai Sen of the Department of Civil Engineering, Istanbul Technical University for introducing the soft computing methods to many of us in early 2000 and making his notes available to everybody. His contribution is very much appreciated. I thank
Prof. Alexander Cheng of Civil Engineering Department, University of Mississippi for encouraging me to write the book and Dr Sinem Bezircioglu of Izmir Institute of Technology to improve its reading. Finally, I would like to once again thank Prof. Zekai Sen for thoroughly reading, and editing the book.

Gökmen Tayfur

‘Be Saint like water’
Turkish Saying

‘In helping and generosity, be like a river’
Mevlana