System Identification for Structural Health Monitoring
System Identification for Structural Health Monitoring

Izuru Takewaki
Kyoto University, Japan

Mitsuru Nakamura
Technical Research Institute, Obayashi Corporation, Japan

Shinta Yoshitomi
Kyoto University, Japan
Contents

Chapter 1 Introduction

1.1 Background and Review .. 1
1.2 Fundamentals of Dynamics ... 3
 1.2.1 Frequency-independent and frequency-dependent stiffness .. 3
 1.2.2 Viscous damping and linear hysteretic damping .. 4
 1.2.3 Vibration under external force .. 8
 1.2.4 Vibration under base acceleration .. 9
 1.2.5 Time series analysis ... 12
1.3 Conventional Techniques for System Identification 15
1.4 Organization of this Book ... 16
References ... 18

Chapter 2 Stiffness-damping Simultaneous Identification
Using Limited Earthquake Records 21

2.1 Introduction ... 21
2.2 Stiffness-damping Simultaneous Identification: Theory 23
 2.2.1 Identification system .. 23
 2.2.2 Identification of stiffness and linear hysteretic (material) damping .. 24
 2.2.3 Identification of viscous damping .. 28
2.3 Verification of Theory Through Numerical Simulation Models... 29
 2.3.1 Numerical simulation model .. 29
 2.3.2 Identification of stiffness ... 30
 2.3.3 Identification of linear hysteretic damping 32
 2.3.4 Identification of viscous damping .. 32
2.4 Verification of Theory Through Actual Limited Earthquake Records .. 34
 2.4.1 Earthquake records in a base-isolated building 34
 2.4.2 Identification of stiffness ... 35
 2.4.3 Identification of damping .. 38
2.5 Identification of Maxwell-type Models 39
2.6 Summaries ... 43
References ... 43
Chapter 3 System Identification Using One-dimensional Shear Beam Finite-element Models and Limited Earthquake Records

3.1 Introduction .. 47
3.2 One-dimensional Shear Beam Subjected to Horizontal Earthquake Motion 48
 3.2.1 Case of viscous damping ... 48
 3.2.2 Case of linear hysteretic damping 50
3.3 Relation of Fourier Transformed Recorded Ground Motion with Model Properties 51
3.4 Identification of Stiffness and Linear Hysteretic (Material) Damping 53
3.5 Identification by Use of Recorded Ground Motion Data ... 55
 3.5.1 Identification based on records just below engineering bedrock 58
 3.5.2 Identification based on dense records 60
3.6 Summaries ... 60
References .. 64

Chapter 4 Temporal Variation of Modal Properties of a Base-isolated Building During an Earthquake

4.1 Introduction .. 67
4.2 System Identification Method .. 68
4.3 Observation of Earthquake Records in Base-isolated Building 70
4.4 Result of Modal-parameter System Identification .. 74
4.5 Summaries ... 82
References .. 82

Chapter 5 Stiffness-damping Simultaneous Identification Under Limited Observation with Noise: Preliminary Approach

5.1 Introduction .. 85
5.2 Stiffness-damping Simultaneous Identification: Theory .. 86
 5.2.1 Identification system .. 86
 5.2.2 Identification of stiffness and linear hysteretic damping .. 88
 5.2.3 Identification of viscous damping 89
5.3 Extension to Stationary Random Vibration ... 89
5.4 Noise Elimination and Reduction .. 91
 5.4.1 Noise elimination and reduction (1) 91
 5.4.2 Noise elimination and reduction (2) 93
5.5 Verification of Theory Through Numerical Simulation Models 94
 5.5.1 Numerical simulation model .. 94
 5.5.2 Identification of stiffness ... 95
9.6.1 Modeling of transfer function ... 193
9.6.2 Outline of new noise compensation method 193
9.6.3 High-pass filtering .. 193
9.6.4 Optimal cutting frequency .. 195
9.6.5 Numerical example using improved identification method ... 195
9.7 Summaries ... 197
References ... 198

Chapter 10 Stiffness-damping Simultaneous Identification Based on Extrapolation of Unrecorded Response to Ground Motion ... 199
10.1 Introduction ... 199
10.2 Identification Method Using Limit Manipulation 200
 10.2.1 Identification of stiffness and damping coefficient 200
 10.2.2 Uniqueness of identification of structural parameters including unrecorded story 202
10.3 Identification Method Based on Extrapolation of Unrecorded Data (Method 1) 206
 10.3.1 Extrapolation of unrecorded data 206
 10.3.2 Identification method using extrapolated data 207
 10.3.3 Numerical examples ... 208
10.4 Identification Method Based on Direct Estimation of Physical Parameters (Method 2) 213
 10.4.1 Identification method without limit manipulation 213
 10.4.2 Numerical examples ... 215
10.5 Summaries ... 218
References ... 219

Chapter 11 Stiffness-damping Identification of Buildings Using Limited Earthquake Records and ARX Model 221
11.1 Introduction ... 221
11.2 Identification of Stiffness and Damping Coefficient Using Limit Manipulation ... 221
11.3 Identification of Stiffness and Damping Coefficient Using ARX Model ... 224
 11.3.1 Summary of procedure ... 224
 11.3.2 Taylor series expansion of transfer function 224
 11.3.3 Relation of the limit value of transfer function with ARX parameters ... 226
 11.3.4 ARX parameter expression of identification function ... 228
 11.3.5 ARX parameter estimation with constraints 228
11.4 Numerical Examples .. 229
 11.4.1 Numerical simulation model .. 229
 11.4.2 Transfer function in terms of ARX parameters 229
 11.4.3 Order of ARX model ... 232
Preface

When structural designers and engineers assess the safety and functionality of building structures, they first construct models for structural analysis. One, two or three-dimensional modeling of structural members and elements is usually introduced based on their experiences and knowledge. Appropriate modeling of members or element connections and elaborate setting of boundary conditions are very significant for reliable structural analysis.

System identification (SI) techniques are important in reducing gaps between the constructed structural systems and their structural design models, and in health monitoring for damage detection. Modal-parameter SI and physical-parameter SI are two major branches in SI. Non-parametric SI and parametric SI are other classifications.

In spite of the importance of damping in the seismic-resistant design of buildings, it does not appear that its identification techniques have been developed sufficiently. Furthermore, it is believed in general that the acceleration records in all the floors above a specific story are necessary to evaluate the story shear force, which is required in the stiffness–damping evaluation. This instrumentation may be unrealistic in multi-storied buildings. To overcome this difficulty, Udwadia et al. (1978) proposed a unique system identification theory for a shear building model. They clarified that unique identification of story stiffness and viscous damping coefficients is possible when acceleration records at the floors just above and below a specific story are available. While the applicability of their theory to actual earthquake records with noises is not clear, their approach is pioneering in the physical-parameter SI and constructs its theoretical basis. However, their theory includes unrealistic manipulation to take the limit of frequency into infinity in order to identify the viscous damping coefficients.

In the first stage of this book, a new physical-parameter SI method is explained in which a linear hysteretic damping ratio can be identified together with the viscous damping coefficients, in addition to the identification of stiffness. It should be noted that both the hysteretic damping and the viscous
damping can be identified simultaneously in a unified manner. Only a simple and efficient fast Fourier transform (FFT) technique is needed in the proposed identification method. The validity and accuracy of the present method are investigated through numerical simulation models and actual earthquake records in a base-isolated building. It is further shown that a new advanced identification technique for mechanical properties of a Maxwell-type model can be developed by combining the present method with a perturbation technique.

The above-mentioned method has a drawback of noise-sensitive properties. In the subsequent research, the effects of extraneous noises have been eliminated partially when a record at either one of floors just above or below a specified story contains a noise. In a realistic situation, however, both records usually contain noises. Furthermore, in the records of microtremors, the level of noise seems to be relatively large compared to the true signal. In these cases the effect of noise on the accuracy of system identification is significant. To overcome this difficulty, a novel noise-effect compensation method is proposed in which unfavorable effects by extraneous noise can be eliminated. By using this method, the formulas are derived to evaluate the level and correlation of noise in addition to the identification of story stiffness and damping. The validity and accuracy of the proposed method are investigated through numerical simulation models and small-scaled tests.

In usual environments around buildings, miscellaneous noise affects buildings. Traffic vibration may vibrate buildings and that vibration source comes from the building base. In addition, buildings contain various electrical or mechanical facilities or equipment too. For these vibration sources, inner vibration modeling is appropriate. In the later part of this book, the stiffness–damping simultaneous identification method for inner vibration sources is explained. The validity and accuracy of the proposed method are investigated through numerical simulation models and small-scale tests.

In the final part of this book, autoregressive with exogenous terms (ARX) models are introduced to remove the bias due to noise and enhance the reliability of the newly developed physical-parameter SI method. The derivation of the relation of the ARX parameters with physical parameters makes the physical-parameter SI method more reliable.

Special character of this book:

i. The physical-parameter SI method explained in this book requires only two accelerometers for the measurement of records. Furthermore, only a simple manipulation of Fourier transformation is required.
ii. The stiffness and damping can be identified simultaneously.
iii. The modal-parameter SI can supplement or support the result by the
physical-parameter SI method.
iv. In place of usual low-pass or high-pass filter techniques, a novel noise-bias compensation method is explained. Because the noise itself is not known in many cases, the identification and elimination of noise is a tough problem.
v. A new technique of system identification is explained in the case where an inner vibration source exists.
vi. The accuracy of the explained SI methods is examined by the actual recorded data.
vii. MATLAB codes are available from the WIT Press website. Please follow the link on the book order page.

Izuru Takewaki
Mitsuru Nakamura
Shinta Yoshitomi

Kyoto, 2012