Critical Infrastructure Security
Critical Infrastructure Security
Assessment, Prevention, Detection, Response

Edited by
Francesco Flammini
To Liana
Contents

Preface ... xv

Part I Fundamentals of Security Risk and Vulnerability Assessment

1 Model-based risk analysis for critical infrastructures 3

 1 Introduction .. 3
 2 The critical infrastructure problem 5
 3 Tools .. 6
 4 Multi-criterion tools (CARVER and MSRAM) 8
 4.1 CARVER .. 8
 4.2 MSRAM .. 9
 5 CI/KR as a Network .. 10
 5.1 MBRA ... 11
 5.2 KDAS ... 13
 6 Resource allocation ... 14
 6.1 Network science ... 15
 6.2 An illustration ... 16
 7 Conclusion .. 18

2 Physical vulnerability assessment 21

 1 Introduction .. 21
 1.1 Terminology ... 21
 1.2 What a VA is not .. 22
 2 Common techniques for finding vulnerabilities 23
 2.1 Security Survey .. 23
 2.2 Security Audit .. 23
 2.3 Design Basis Threat (DBT) 24
 2.4 CARVER Method .. 25
 2.5 Delphi Method ... 25
 2.6 Fault Tree Analysis 26
 2.7 Software tools .. 26
 2.8 Adversarial Vulnerability Assessments 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA best practices</td>
<td>28</td>
</tr>
<tr>
<td>3.1 VA personnel</td>
<td>28</td>
</tr>
<tr>
<td>3.2 Brainstorming</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Common security mistakes</td>
<td>31</td>
</tr>
<tr>
<td>3.3 The VA report: Delivering the “bad news”</td>
<td>33</td>
</tr>
<tr>
<td>Vulnerability myths and mistakes</td>
<td>34</td>
</tr>
<tr>
<td>Part II Modeling and Simulation Tools for Critical Infrastructures</td>
<td></td>
</tr>
<tr>
<td>3 Modeling and simulation of critical infrastructures</td>
<td>39</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>39</td>
</tr>
<tr>
<td>2 Interdependency modeling</td>
<td>40</td>
</tr>
<tr>
<td>3 Holistic approaches</td>
<td>42</td>
</tr>
<tr>
<td>4 Critical Infrastructures as Complex Systems</td>
<td>45</td>
</tr>
<tr>
<td>4.1 Topological analysis</td>
<td>45</td>
</tr>
<tr>
<td>4.2 Functional analysis</td>
<td>47</td>
</tr>
<tr>
<td>5 Simulative approaches</td>
<td>48</td>
</tr>
<tr>
<td>5.1 Agent-based approaches</td>
<td>50</td>
</tr>
<tr>
<td>5.2 Multilayer approaches</td>
<td>51</td>
</tr>
<tr>
<td>6 Conclusions</td>
<td>52</td>
</tr>
<tr>
<td>4 Graphical formalisms for modelling critical infrastructures</td>
<td>57</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>2 Requirements for CI modelling and simulation</td>
<td>58</td>
</tr>
<tr>
<td>3 Graphical formalisms for CI modelling and simulation</td>
<td>60</td>
</tr>
<tr>
<td>3.1 Graph-based techniques</td>
<td>60</td>
</tr>
<tr>
<td>3.2 Petri Nets (PNs)</td>
<td>61</td>
</tr>
<tr>
<td>3.3 General simulation environments</td>
<td>62</td>
</tr>
<tr>
<td>3.4 Agent-based modelling and simulation</td>
<td>62</td>
</tr>
<tr>
<td>3.5 Discussion of requirements</td>
<td>63</td>
</tr>
<tr>
<td>4 Practical experiences in modelling CIs: meeting the requirements with SAN</td>
<td></td>
</tr>
<tr>
<td>4.1 CRUTIAL and HIDENETS: a brief introduction</td>
<td>66</td>
</tr>
<tr>
<td>4.2 On the usage of SAN to match requirement R4</td>
<td>66</td>
</tr>
<tr>
<td>4.3 On the usage of SAN to match requirement R6</td>
<td>69</td>
</tr>
<tr>
<td>5 Conclusions</td>
<td>70</td>
</tr>
<tr>
<td>5 Semantic interoperability among federated simulators of critical infrastructures – DIESIS project</td>
<td>75</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>76</td>
</tr>
<tr>
<td>2 Related works and initiatives</td>
<td>78</td>
</tr>
</tbody>
</table>
3 DIESIS project

3.1 Managerial, legal and economic features

3.2 Technical features

4 Conclusion

6 Game theory in infrastructure security

1 Introduction

2 Game-theoretic models
 2.1 Simultaneous AD games
 2.2 Sequential DA games
 2.3 Sequential AD games
 2.4 Sequential DAD games
 2.5 Simultaneous DD games

3 Limitations of game-theoretic models

4 Conclusion

Part III Cybersecurity in Information and SCADA Systems

7 Modelling, measuring and managing information technology risks

1 Introduction

2 What is risk with respect to information systems?
 2.1 Threats
 2.2 Vulnerabilities

3 Why is it important to manage risk?

4 Managing risk at the organizational level

5 How is risk assessed?
 5.1 Quantitative risk assessment
 5.2 Qualitative risk assessment

6 How is risk managed?
 6.1 Strategies for managing individual risks
 6.2 High-level risk management strategies
 6.3 Communicating risks and risk management strategies

7 What are some common risk assessment/management methodologies and tools?
 7.1 NIST methodology
 7.2 OCTAVE®
 7.3 FRAP
 7.4 GRC tools

8 Summary
8 Trustworthiness evaluation of critical information infrastructures

1 Introduction ... 125
2 Dependability and security evaluation approaches 126
 2.1 A taxonomy for evaluation approaches 126
 2.2 Common evaluation approaches and applications 128
3 On the evaluation of Financial Infrastructure
 Protection (FIP) ... 131
 3.1 FCI: Trustworthiness evaluation trends 131
 3.2 FIP trustworthiness requirements and key components ... 132
 3.3 FIP example: CoMiFin as a FCI wrapper 133
 3.4 Metric-based FIP trustworthiness evaluation 134
4 On the evaluation of CIIP 134
 4.1 Design requirements for CIIP 135
 4.2 Peer-to-Peer (P2P)-based CIIP 136
 4.3 Mitigation strategy for node crashes 137
 4.4 Mitigation strategy for illicit SCADA data modification 137
 4.5 Evaluation of P2P-based CIIP 137
5 Conclusion .. 138

9 Network resilience .. 141

1 Introduction ... 141
2 A component-based framework for improving network resilience in CIs 144
3 Intrusion detection and reaction in satellite networks 146
4 Detection and remediation of a distributed attack over an IP-based network 148
5 Diagnosis-driven reconfiguration of WSNs 149
6 Conclusions .. 152

10 Wireless sensor networks for critical infrastructure protection ... 155

1 Introduction ... 155
2 Security threat analysis 157
 2.1 Adversary models 157
 2.2 Risk assessment 158
3 Survey of the state of the art 159
 3.1 Sensor node protection 159
 3.2 Dependable sensor networking 161
 3.3 Dependable sensor network services 164
4 Conclusions and identification of further research topics .. 165
Part IV Monitoring and Surveillance Technologies

11 Intelligent video surveillance 177
 1 Introduction ... 177
 2 Architecture of an IVS system 179
 3 Examples of applications 181
 3.1 LAICA project ... 181
 3.2 THIS project ... 182
 3.3 Other examples 186
 4 Conclusions ... 187

12 Audio surveillance ... 191
 1 Introduction ... 191
 2 Sound recognition for audio surveillance 193
 3 A representative picture of the related literature 197
 3.1 Evaluation of audio surveillance frameworks 199
 4 Privacy ... 201
 5 Conclusion .. 202

13 Terahertz for weapon and explosive detection 207
 1 Introduction ... 207
 2 Terahertz technology 208
 2.1 Overview .. 208
 2.2 THz systems .. 209
 3 Terahertz for weapons detection 211
 4 Terahertz for explosive detection 213
 5 Discussion ... 216

14 Structural health monitoring 221
 1 Introduction ... 221
 2 Structural evaluation 222
 3 Sensor selection ... 223
 3.1 Accelerometers .. 224
 3.2 Strain sensors .. 224
 3.3 Tilt sensors .. 224
 3.4 Displacement sensors 224
 3.5 Corrosion sensors 225
 3.6 Fiber Bragg Gratings (FBGs) 226
 3.7 Acoustic emission sensors 227
 3.8 Additional technologies 227
15 Networks of simple sensors for detecting emplacement of improvised explosive devices .. 233

1. Introduction .. 233
2. Clues to IED emplacement .. 234
 2.1 Cameras versus nonimaging sensors 234
 2.2 Prior probabilities for emplacement 235
 2.3 Anomalous behavior .. 238
 2.4 Goal changing and coordinated activity 239
3. Sensor management .. 241
4. Experiments ... 242
5. Conclusions ... 244

Part V Security Systems Integration and Alarm Management

16 Security systems design and integration 249

1. Introduction .. 249
2. The intrusion detection system .. 250
 2.1 Sensors ... 251
 2.2 Internal sensors .. 253
 2.3 External sensors .. 254
3. The access control system .. 255
4. The video surveillance system ... 257
5. The communication network .. 260
6. Integration of security systems: The supervision and control system .. 263
7. Conclusions ... 265

17 Multisource information fusion for critical infrastructure situation awareness .. 267

1. Introduction .. 267
2. Joint Directors of Laboratories (JDL) data fusion process model .. 268
3. Comments on the state of the art .. 270
4. Human-centric information fusion 271
5. Implications for infrastructure situation awareness 274
6. Summary ... 274
18 Simulation-based learning in the physical security industry 279
 1 Introduction ... 279
 2 Simulation overview .. 279
 3 Security simulation .. 280
 4 Security simulation domains ... 280
 4.1 Computation simulators ... 280
 4.2 Interactive simulation .. 282
 5 Simulation in a training environment 283
 5.1 Systematic approach to training for simulation 284
 6 Interactive simulators and simulation learning theory 287
 6.1 Learning retention .. 288
 7 Security simulation and vulnerability assessment 289
 8 Historical adoption curve of use of simulators 289
 9 Conclusion ... 291

19 Frameworks and tools for emergency response and crisis management 293
 1 Introduction ... 293
 2 CATS ... 294
 2.1 CATS architecture ... 294
 2.2 Model descriptions ... 296
 2.3 Consequence assessment ... 298
 3 Summary and conclusions .. 301
Preface

The security of critical infrastructures is a paramount issue in modern society. In fact, infrastructures like those for transportation, energy, telecommunication, banking, etc. whose operability is essential for the well-being of a large number of individuals are nowadays exposed to severe threats, both natural (earthquakes, landslides, flooding, etc.) and intentional (thefts, vandalism, terrorism, etc.). In recent years, the scientific community has addressed the issue of Critical Infrastructure Security (CIS) through conferences, journals and other publications. However, in most cases, the published material fails to address the CIS issue as a multi-faceted and multi-disciplinary problem which needs to be analysed in an integrated manner both at the organizational and technological levels, and looking at digital (“cyber”) as well as physical security.

The purpose of this book is to provide a comprehensive picture of the state-of-the-art and trends in methods and tools for infrastructure protection, focusing on the following topics:

- **Assessment**, that is the understanding of risks and vulnerabilities as well as expected results of possible mitigations. This can be achieved by analysis, modelling and simulation.

- **Prevention**, that is the reduction of risk by predicting threat effects. This can be achieved by means of deterrence and other “passive” countermeasures (e.g. security by design).

- **Detection**, that is the capability of real-time recognition of abnormal conditions or behaviours. This can be achieved by means of “active” sensors and other technological tools.

- **Response**, that is the quick reaction to threats. This can be achieved by adopting early warning, situational awareness and decision support systems.
Most of the current best practices are based on intrusion detection/access control, people scanning and video surveillance designs which are often weak and poorly effective since they are not rigorous enough and frequently not systematically guided by risk analysis principles. This book provides the necessary balance between the analysis aspects, which involve people (personnel, operators, adversaries, etc.) taking into account organizational and interdependency effects, and the technological tools (smart-detectors, information networks, control software, etc.), which are required to implement modern integrated surveillance and security management systems. Therefore, the topics presented in the volume progress smoothly from security evaluation methods and tools to security enhancement approaches and technologies.

It is the Editor’s belief that the book provides the most up to date compendium of Critical Infrastructure Security and he is grateful to all authors for their excellent contributions.

The Editor, 2012