Advanced Train Control Systems
Advanced Train Control Systems

Editor: B. Ning
Beijing Jiaotong University, China
Contents

CTCS—Chinese Train Control System
B. Ning, T. Tang, K. Qiu, C. Gao & Q. Wang .. 1

Re-signalling with communications-based train control – New York City Transit’s recipe for success
A.F. Rumsey & N. Ghaly ... 9

Fully digitalized ATC (Automatic Train Control) system of integrated functions of train-protection and interlocking
T. Matsuki, T. Okamiya1, S. Hondo & H. Tsuruga .. 19

Automatic train control system for the Shinkansen utilizing digital train radio
T. Igarashi, M. Aoyagi, R. Ubukata, N. Amiya & Y. Tobita 27

CBTC (Communication Based Train Control): system and development
N. Bin, T. Tao, Q. K. Min & G. C. Hai ... 37

Re-signaling the Paris Line 1: from driver-based to driverless operation
C. Braban & P. Charon .. 45

Application of communication based Moving Block systems on existing metro lines
L. Lindqvist & R. Jadhav .. 55

An algorithm for braking curve calculations in ERTMS train protection systems
B. Friman ... 65

A new ground-to-train communication system using free-space optics technology
H. Kotake, T. Matsuzawa, A. Shimura, S. Haruyama & M. Nakagawa 75
Automatic train operation system for the high speed Shinkansen train
Y. Yasui ... 85

The opportunity to improve software RAMS
Y. González-Arechavala, J.A. Rodríguez-Mondéjar & G. Latorre-Lario 91

ERTMS Level 2: effect on capacity compared with “best practice” conventional signalling
W. A. M. Barter .. 103

Enhanced ETCS_L2/L3 train control system
D. Emery ... 113

European experiences with ERTMS implementation: the case of the high-speed railway Amsterdam–Antwerp
J.H. Baggen, J.M. Vleugel & J.A.A.M. Stoop .. 123

Analysis of braking performance for the definition of emergency braking intervention in ATP systems
M. Malvezzi, F. Bartolini, M. Rinchi & A. Rindi .. 133

The impact of GSM-R on railway capacity
D.N. Jansen, S.G. Klabes & E. Wendler ... 143

Author index ... 153
Preface

Since 1992 I have participated in all of the Comprail conferences. I think that Comprail is one of the most successful conferences in the areas of railways and other transit systems. The proceedings of the conferences reflect the new achievements and applications of computer based technologies in railways. The Conference series establishes a good platform for professional experts from all over the world to exchange their views and achievements.

Professor Carlos Brebbia, one of the conference chairmen for Comprail 2010, suggested that I review the papers on advanced train control systems published in the most recent previous proceedings and select the best papers for the publication of this special volume on Advanced Train Control Systems (ATCS). The idea was to collect the best papers in one of the areas of the conference for publication as a separate volume to help the international reader. I was happy with that suggestion and in particular with being responsible for editing this special volume for Advanced Train Control Systems for signaling engineers, designers, manufactures and operators amongst them. As editor, I hope that I have made the right choice and that readers find this special volume informative and helpful.

Advanced Train Control Systems are playing an important role in improving the efficiency and safety of train operation, acting as their “brains and nerves”. ATCS needs highly reliable and safe systems using complex computer tools. Normally, these systems consist of four parts: the central control system; the station control systems and wayside systems; the on-board control systems and the communication network including mobile communication. From the point of view of the whole life cycle, an Advanced Train Control System includes design and development, re-design for a special line application, simulation verification and test, plus safety assessment of the system and subsystems. These concepts are known to those who are familiar with typical advanced train control systems such as ETCS, CTCS for main line railways and CBTC for transit systems.

When selecting and editing the papers for this special volume, it was my intention to offer the reader a wide picture of the ATCS field based on past
papers presented at the Comprail conferences. I hope that this purpose has been achieved.

Finally, I should thank all the authors of all sixteen papers for their contribution to this special volume. Without their support, this special volume could not have been published.

The Editor