Computational Methods in Materials Characterisation
High Performance Structures and Materials

Objectives

The High Performance Structures and Materials series has been established to document the dynamic and rapid changes presently happening in the field of structural engineering. New concepts are constantly being introduced, and the series reflects the wide range of significant international research and development.

The series encompasses the following topics:

- High Performance Structures
- Nonlinear Structural Behaviour
- Emerging Applications
- Design Innovation
- Smart Structures
- Space Structures
- Microstructures
- Marine and Offshore Structures
- Composite Structures
- Retrofitting of Structures
- Sustainability in Design
- Shape and Topology Optimisation
- Shock and Impact
- Structural Capacity under Damage
- Soil Structure Interaction
- Material Technology
- Dynamic Control of Materials
- Smart Materials
- Sensor Technology
- Virtual Instrumentation
- Numerical Methods
- Computer Packages
- Computer Modelling
- Control Systems

Associate Editors

- **J.A.C. Ambrosio**
 Instituto Superior Tecnico
 Portugal

- **H. Azegami**
 Toyohashi University of Technology
 Japan

- **A.F.M. Azevedo**
 University of Porto
 Portugal

- **G. Belingardi**
 Politecnico di Torino
 Italy

- **C.A. Brebbia**
 Wessex Institute of Technology
 UK

- **S.C. Burns**
 University of Illinois at Urbana-Champaign
 USA
J.J. Connor
Massachusetts Inst. of Technology
USA

N. Jones
The University of Liverpool
UK

I. Doltsinis
University of Stuttgart
Germany

A.J. Kassab
University of Central Florida
USA

M. Domaszewski
Universite de Belfort-Montbeliard
France

E. Kita
Nagoya University
Japan

M. El-Sayed
Kettering University
USA

T. Krauthammer
Penn State University
USA

F.P. Escrig
Universidad de Sevilla
Spain

M. Langseth
Norwegian University of Science and Technology
Norway

C. Gantes
National Tech. University of Athens
Greece

H.A. Mang
Technische Universitat Wien
Austria

P. Gaudenzi
Universita Degli Studi di Roma ‘La Sapienza’
Italy

H. Martikka
Lappeenranta University of Technology
Finland

J.M. Hale
University of Newcastle
UK

R.W. Mines
The University of Liverpool
UK

N. Ishikawa
National Defense Academy
Japan

A. Miyamoto
Yamaguchi University
Japan
D. Necesulescu
University of Ottawa
Canada

R. Schmidt
RWTH Aachen
Germany

S. Tanimura
Aichi University of Technology
Japan

D. Yankelevsky
Technion-Israel Institute of Technology
Israel

L.C. Simoes
University of Coimbra
Portugal

T. X. Yu
Hong Kong University of Science and Technology
Hong Kong
FIRST INTERNATIONAL CONFERENCE ON
COMPUTATIONAL METHODS IN
MATERIALS CHARACTERISATION

MATERIALS CHARACTERISATION

CONFERENCE CHAIRMEN

A.A. Mammoli
University of New Mexico, USA

C.A. Brebbia
Wessex Institute of Technology, UK

INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE

S G Advani
A Belonoshko
M Bushi
H Dabrowski
W P De Wilde
D Goulias
A L Graham
TY Kam
JR Klepaczko

J K Kurzydlowski
J W Leggoe
L Mondy
G Moriconi
D S Neceulescu
Y-L Shen
V Tikare
AP Wilczynski
AZ Zinchenko

Organised by

Wessex Institute of Technology, UK

and

University of New Mexico, USA
Computational Methods in Materials Characterisation

Editors

A.A. Mammoli
University of New Mexico, USA

C.A. Brebbia
Wessex Institute of Technology, UK
Materials have played major roles in directing the course of history. Today, materials can play an equally significant part, by improving quality of life, while at the same time becoming more accessible, at a lower environmental and economic cost. Materials characterization is an important aspect of this process. According to the definition of the ASM International Materials Characterization Handbook, ‘Characterization describes those features of composition and structure (including defects) of a material that are significant for a particular preparation, study of properties, or use, and suffice for reproduction of the material.’ New materials are being developed that are lighter, stronger, and require less energy to produce than existing materials. Others are used in more durable and more bio-compatible implants. Yet others are traditional materials whose structure and behavior is made more complex by recycling.

To achieve better performance (mechanical, energetic, thermal, etc.), the structure of many materials is becoming increasingly complex, to the point where simple mathematical models and experimental methods are inadequate for the understanding and characterization of their properties. Structure is probably the single most important factor deciding the behavior of a material, be it mechanical, thermal, optical, electrical or chemical. Often the structure depends on the processing history, and thus the material must be characterized in two states of its life, fluid and solid. Computers have become almost essential in assisting the scientist or engineer in the characterization of materials that are in use, under development, or more interestingly purely abstract concepts.

In many cases, computer models are complementary to experimental measurements. For example, one can characterize the morphology and chemical behavior of bone material, and then attempt to reproduce the same characteristics in an artificial material that can be prepared and implanted readily. Computers can then help in determining whether the mechanical behavior of the artificial material is adequate for the application and perhaps in modifying it to optimize certain properties, or one may be interested in characterizing the damage sustained by a particular sample, and then model the material to investigate the failure mechanisms that lead to this damage, again with the betterment of the material in view.

This book comprises most of the papers presented at the 1st International Conference on Material Characteristics held in Santa Fe, New Mexico. It brings together the work of practitioners in many fields of engineering,
materials and computational science, and especially links experimentalists and modelers. It was felt that in many cases, experimentalists may not be aware of certain computational methods, while at the same time modelers may find a new application which is well suited to their simulation work. By such an interaction, new collaborations, opportunities and ideas may be established, which will ultimately result in scientific advances.

The editors wish to acknowledge the invaluable help of the international scientific advisory committee, for their work in obtaining, selecting and in many cases providing excellent contributions to the conference.

The Editors,
Santa Fe
Contents

Section 1: Parameter identification

Parameter identification of a non-linear viscoelastic model for engineering polymers using a genetic algorithm
W. Seubkinorn, A. Chaikittiratana & N. Chaiyaratana ..3

Parameter identification of a model helicopter blade using measurement data
B. Hong, L. P. Pey & T. Y. Soh ...13

Characterisation of elementary sintering processes using Monte Carlo simulation and X-ray computed microtomography

Surface effect on the mechanical property of metal nanowire
H. A. Wu, G. R. Liu & J. S. Wang ...33

Section 2: Optimisation of materials

Manufacture and morphological characterization of osteoconductive porous scaffolds
A. Mazzoli, G. Moriconi, O. Favoni & A. Mammoli ...45

Material characterisation and optimisation of fibre metal laminates
R. van Rooijen, J. Sinke, T. J. de Vries & S. van der Zwaag55

Section 3: Thermomechanical behaviour

Flow stress and dislocation-interface interaction in thin metallic films: an atomistic analysis
E. S. Ege & Y.-L. Shen ..67
Material-independent solution for the distributions of stress and plastic strain on the neck section
G. Mirone ...77

Experimental evaluation of wire mesh bearing dampers at cryogenic conditions
E. M. El-Khateeb, B. H. Ertas & J. M. Vance ..87

Identification of mechanical parameters in underground structures
P. Prochážka & J. Trčková ...101

The effect of martensite transformation induced by plastic deformation on the stainless steels formability limits
B. M. Dariani & A. Sadough ..111

Section 4: Damage mechanisms
Characterisation of contact damage in porcelain/metal and porcelain/polymer bilayers
C. Ford, M. B. Bush & X.-Z. Hu ..123

Design aspects of a new material wear tester
J. L. Loth, G. J. Morris & R. Ware ...133

Section 5: Composites
Developing techniques for modeling spatially heterogeneous materials
J. W. Leggoe ...145

Indentation behavior of heterogeneous materials
E. S. Ege, R. Pereyra & Y.-L. Shen ...155

Effect of shapes and spacings of inclusions on transport properties of densely packed composites

3D microstructure visualization and modeling of the mechanical behavior of SiC particle reinforced aluminum composites
B. Wunsch, X. Deng & N. Chawla ...175

A distributed-dislocation method for generalized eigenstrain problems
J. D. Lerma, T. A. Khraishi, Y.-L. Shen & B. D. Wirth185
Section 6: Foams

Modeling multiphase flow of liquefied removable epoxy foam
A. C. Sun, K. L. Erickson, M. L. Hobbs, D. Adolf & M. Stavig197

Polyurethane foam response to high heat fluxes
M. L. Hobbs & G. H. Lemmon ...207

Liquefaction and flow behavior of a thermally decomposing removable epoxy foam

Section 7: Polymers

Constitutive compliance/stiffness equations of viscoelasticity for resins
M. Klasztorny ..245

Fabrication and characterization of intercalated/exfoliated polydiene polymers-clay nanocomposites
H. S. Jeon & J. K. Rameshwaram ..255

Objective stress rate considerations for visco-elastic response of polymers
D. F. E. Stolle & W. S. Smith ...265

Section 8: Concretes

Concrete in the service of mankind: characterization aimed at sustainable development
G. Moriconi & A. A. Mammoli ...277

The effects of type of cement and curing methods on the pore structure of concrete
M. Anwar ..287

A 3D study of mortar degradation by X-ray computed microtomography
D. Bernard, D. Chen & N. Burlion ..297

Estimation of alkali diffusivity from dynamic leaching test
D. Sani, G. Moriconi & G. Fava ..307

Overall material properties of glass-fiber reinforced concrete
P. Procháza ..317
Section 9: Interface phenomena

Growth behavior of nitride layers formed on chromium electrodeposit
in plasma-nitriding
S. C. Kwon, K. S. Nam, J. Y. Eom, V. Shankar Rao & H. S. Kwon329

Laser cleaning and texturizing on high-speed steel tools for enhanced
PVD process

Index of Authors..349