Computer Aided Design
of Wire Structures
Frequency and Time Domain Analysis
Computer Aided Design of Wire Structures
Frequency and Time Domain Analysis

D. Poljak
University of Split, Croatia

V. Doric
University of Split, Croatia

S. Antonijevic
University of Split, Croatia
Dedication

To our beloved ones.
Our knowledge can only be finite, while our ignorance must necessarily be infinite.
Karl Popper

It’s better to burn out than fade away.
Neil Young
Contents

PREFACE ... xiii

Part I: Theoretical background of wire modeling 1

CHAPTER 1
Introduction to the Modelling of Wire Antennas and Scatterers 3
 1.1 Frequency domain thin wire integral equations 3
 1.2 Time domain thin wire integral equations 4
 1.3 Modelling in the frequency and time domain: computational aspects .. 5
 1.4 References ... 6

CHAPTER 2
Frequency Domain Modelling of Thin Wires 9
 2.1 Thin wires in free space ... 9
 2.1.1 Single straight wire in free space 9
 2.1.2 Boundary element solution of thin wire integral equation ... 12
 2.1.2.1 Linear BEM solution .. 12
 2.1.3 Calculation of the radiated electric field and the input impedance of the wire 16
 2.1.4 Numerical results for thin wire in free space 17
 2.1.5 Thin wire array in free space: horizontal arrangement 18
 2.1.6 Boundary element analysis of horizontal antenna array 20
 2.1.6.1 Linear BEM solution ... 20
 2.1.7 Radiated electric field of the wire array 21
 2.1.8 Numerical results for horizontal wire array 21
2.2 Thin wires above a lossy half-space ..23
 2.2.1 Straight wire above dissipative half-space25
 2.2.2 Electric field and the input impedance of a single wire
 above a half-space ...27
 2.2.3 Boundary element analysis for single wire above a real
 ground..28
 2.2.4 Calculation of electric field and input impedance29
 2.2.5 Numerical results for a single wire above a real ground32
 2.2.6 Multiple straight wire antennas over a lossy half-space33
 2.2.7 Electric field of a wire array above a lossy half-space36
 2.2.8 Boundary element analysis of wire array above a lossy ground...36
 2.2.9 Near field calculation for wires above half-space38
 2.2.10 Computational examples for wires above a lossy half-space39
 2.3 References...42

CHAPTER 3
Time Domain Modelling of Thin Wires ..47
 3.1 Thin wires in free space ...48
 3.1.1 Single wire in free space...48
 3.1.2 Two coupled identical wires in free space.......................52
 3.1.3 Computational procedures for thin wires in free space56
 3.1.3.1 Numerical solution of time domain Hallen equation....56
 3.1.3.2 Computational procedures for coupled wires in
 free space ...61
 3.1.3.3 Numerical results for thin wires in free space63
 3.1.3.4 Thin wire antenna and scatterer in free space.........64
 3.1.3.5 Two coupled wires in free space66
 3.2 Thin wires in a presence of a two-media configuration67
 3.2.1. Single straight wire above a real ground68
 3.2.2 Two coupled horizontal wires in a two media configuration72
 3.2.3 Thin wire array above a real ground...............................75
 3.2.4 Computational procedures for horizontal wires above a
dielectric half-space ...79
 3.2.4.1 Numerical solution of the time domain Hallen integral
 equation for half-space problems79
 3.2.4.2 Computational procedures for coupled wires above
 real ground..82
3.2.4.3 Space-time numerical procedure for wire array above
a real ground ...84
3.2.5 Computational examples ..88
 3.2.5.1 Thin wires over a perfect ground88
 3.2.5.2 Thin wires over a dielectric half-space91
3.3 References ..95

Part II: TWiNS - Thin Wire Numerical Solver
User Manual ..99

Introduction ...101
TD-TWiNS ..101
Input of the configuration parameters ...102
Calculation ..104
Graphical and numerical representation of the results104
File operations ..105
Exporting in "Fortran compatible" text files106
Exporting in formatted text file ..106
Examples ...106
FD-TWiNS ..114
Input of the configuration parameters ..115
Calculation ..117
Graphical and numerical representation of the results117
Calculation of the far field pattern ...119
File operations ..120
Exporting in "Fortran compatible" text files120
Exporting in formatted text file ..121
Examples ...121
Modelling of radiation and scattering from arrays composed from straight thin wires is a very important topic, not only in antenna theory and applications, but also in many electromagnetic compatibility (EMC) related applications. This book accompanied with related TWiNS (Thin Wire Numerical Solver) software package is an extension of the previous book by D. Poljak devoted to the analysis of thin wires in frequency and time domain via integral equation approach entitled: *Electromagnetic Modelling of Wire Antenna Structures*.

That book, written more than five years ago, featured a particular variant of the Galerkin Bubnov Indirect Boundary Element Method (GB-IBEM) in both the frequency and time domain, originally developed by D. Poljak, (entitled as the Finite Element Integral Equation Method – FEIEM). The *Electromagnetic Modelling*... book has dealt with simple geometries (single straight wire, curved wire and two coupled wires in an inhomogeneous medium) and has been accompanied with the TAWS (Transient Analysis of Wire Structures) code for handling the two-wire array in a two media configuration in the time domain.

The present book entitled: *Computer Aided Design of Wire Structures*, extending the issue of the previous book, deals with an analysis of thin wire arrays in the frequency and time domain via TWiNS code. Using this code enables one to calculate corresponding current distribution, near and far field, radiation pattern and input impedance.

The book is divided into two parts. The first part is concerned with the theoretical background and the frequency and the time domain numerical modelling procedures for thin wire arrays on which the TWiNS code has been based. Frequency and time domain GB-IBEM procedures implemented in the TWiNS code are presented in detail. Many illustrative computational examples, pertaining not only to academic, but also to some real world problems are also enclosed.

The second part of the book is devoted to the description of the TWiNS code and contains the complete user manual with some worked examples related to the frequency and time domain examples of wire arrays.

We hope that the reader will find useful the presented theory and accompanied software package in analyzing and resolving his/her own problems related to antennas or some EMC problems. This book and developed software stem from years of
continuing work in the area of wire antennas and related EMC applications, not only by ourselves, but also by some of our colleagues. The software we have produced should be regarded as a key-stone to the future software packages to be developed. Those packages will implement much sophisticated user interface and will be dealing with more complex wire structures thus enabling analysis and solutions for manifold problems in electromagnetics.

The Authors
Split, 2007