Disposal of Hazardous Waste in Underground Mines
The Sustainable World

Aims and Objectives

Sustainability is a key concept of 21st century planning in that it broadly determines the ability of the current generation to use resources and live a lifestyle without compromising the ability of future generations to do the same. Sustainability affects our environment, economics, security, resources, health, economics, transport and information decisions strategy. It also encompasses decision making, from the highest administrative office, to the basic community level. It is planned that this Book Series will cover many of these aspects across a range of topical fields for the greater appreciation and understanding of all those involved in researching or implementing sustainability projects in their field of work.

Topics

Data Analysis
Data Mining Methodologies
Risk Management
Brownfield Development
Landscaping and Visual Impact Studies
Public Health Issues
Environmental and Urban Monitoring
Waste Management
Energy Use and Conservation
Institutional, Legal and Economic Issues
Education
Visual Impact

Simulation Systems
Forecasting
Infrastructure and Maintenance
Mobility and Accessibility
Strategy and Development Studies
Environment Pollution and Control
Land Use
Transport, Traffic and Integration
City, Urban and Industrial Planning
The Community and Urban Living
Public Safety and Security
Global Trends

Main Editor

E. Tiezzi
University of Siena
Italy
Associate Editors

D. Almorza
University of Cadiz
Spain

M. Andretta
Montecatini
Italy

A. Bejan
Duke University
USA

A. Bogen
Down to Earth
USA

I. Cruzado
University of Puerto Rico-Mayaguez
Puerto Rico

W. Czyczula
Krakow University of Technology
Poland

M. Davis
Temple University
USA

K. Dorow
Pacific Northwest National Laboratory
USA

C. Dowlen
South Bank University
UK

D. Emmanouloudis
Technical Educational Institute of
Kavala
Greece

J.W. Everett
Rowan University
USA

R.J. Fuchs
United Nations
Chile

F. Gomez
Universidad Politecnica de Valencia
Spain

K. G. Goulias
Pennsylvania State University
USA

A.H. Hendricks
Free University of Brussels
Belgium

I. Hideaki
Nagoya University
Japan

S.E. Jørgensen
The University of Pharmaceutical Science
Denmark

D. Kaliampakos
National Technical University of
Athens
Greece
H. Kawashima
The University of Tokyo
Japan

B. A. Kazimee
Washington State University
USA

D. Kirkland
Nicholas Grimshaw & Partners
UK

A. Lebedev
Moscow State University
USA

D. Lewis
Mississippi State University
USA

N. Marchettini
University of Siena
Italy

J. F. Martin-Duque
Universidad Complutense
Spain

M. B. Neace
Mercer University
USA

R. Olsen
Camp Dresser & McKee Inc.
USA

M. S. Palo
The Finnish Forestry Research Institute
Finland

J. Park
Seoul National University
Korea

M. F. Platzer
Naval Postgraduate School
USA

V. Popov
Wessex Institute of Technology
UK

A. D. Rey
McGill University
Canada

H. Sozer
Illinois Institute of Technology
USA

A. Teodosio
Pontificia Univ. Catolica de Minas Gerais
Brazil

W. Timmermans
Green World Research
The Netherlands

R. van Duin
Delft University of Technology
The Netherlands

G. Walters
University of Exeter
UK
Disposal of Hazardous Waste in Underground Mines

Editors

V. Popov
Wessex Institute of Technology, UK

R. Pusch
Geodevelopment AB, Germany
Disposal of Hazardous Waste In Underground Mines

Series: The Sustainable World, Volume 11

Editors

V. Popov
Wessex Institute of Technology, UK

R. Pusch
Geodevelopment AB, Germany

Published by

WIT Press
Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK
Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853
E-Mail: witpress@witpress.com
http://www.witpress.com

For USA, Canada and Mexico

WIT Press
25 Bridge Street, Billerica, MA 01821, USA
Tel: 978 667 5841; Fax: 978 667 7582
E-Mail: infousa@witpress.com
http://www.witpress.com

British Library Cataloguing-in-Publication Data

A Catalogue record for this book is available from the British Library

ISSN: 1476-9581

Library of Congress Catalog Card Number: 2006921658

No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

© WIT Press 2006

Printed in Great Britain by Athenaeum Press Ltd., Gateshead.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.
Contents

Preface: Towards a safer future xvii

Chapter 1
Hazardous waste generation and management in Europe 1
D. Kaliampakos, A. Mavropoulos & M. Menegaki

1.1 Introduction ... 1
1.2 Hazardous waste generation in Europe .. 2
 1.2.1 Hazardous waste generation per employee 4
 1.2.2 Main waste streams in Europe .. 5
1.3 Current hazardous waste management in Europe 7
1.4 Trends and expectations .. 9
 1.4.1 Dangerous substances from waste streams and EU priorities.............. 9
 1.4.2 Future trends up to 2010 ... 14
 1.4.3 Emission trends of heavy metals .. 14
 1.4.4 Emission trends of pesticides and POPs 15
1.5 The effect of Directive 99/31 ... 16
1.6 Waste streams and pollutants of interest ... 17
 1.6.1 Waste streams of interest ... 17
 1.6.2 Pollutants of interest ... 18
 1.6.3 Selection of the pollutants of interest ... 18
 1.6.4 Chemical substances ... 19
 1.6.4.1 Chemicals of concern.. 22
 1.6.5 Heavy metals ... 22
 1.6.5.1 Heavy metals in water pathways.. 22
 1.6.5.2 Heavy metals in soil... 23
 1.6.5.3 Heavy metals in food .. 23
 1.6.6 Persistent organic pollutants ... 23
 1.6.6.1 Polycyclic aromatic hydrocarbons 23
 1.6.6.2 Organochlorines dispersal in soil, groundwater and some global-scale problems ... 24
1.7 Conclusions ... 27
Chapter 2
Need and potential for underground disposal – survey of underground mines in Europe) .. 33
D. Kaliampakos, A. Mavropoulos & M. Menegaki
2.1 Surface vs. underground hazardous waste disposal facilities ... 33
2.2 Survey of underground mines in Europe... 34
2.3 The profile of mining activity in 15 EU countries ... 38
 2.3.1 Austria... 38
 2.3.2 Belgium... 39
 2.3.3 Denmark.. 39
 2.3.4 Finland .. 40
 2.3.5 France.. 40
 2.3.6 Germany.. 41
 2.3.7 Greece ... 41
 2.3.8 Ireland ... 42
 2.3.9 Italy ... 43
 2.3.10 Luxembourg.. 44
 2.3.11 Portugal... 44
 2.3.12 Spain ... 45
 2.3.13 Sweden.. 46
 2.3.14 The Netherlands... 48
 2.3.15 The United Kingdom .. 48
2.4 Inactive underground mines used as waste disposal sites... 50
 2.4.1 Morsleben salt mine... 50
 2.4.2 Herfa-Neurode salt mine... 52
 2.4.3 Konrad iron mine ... 55
 2.4.4 Stripa iron mine .. 57
 2.4.5 Asse salt mine .. 58

Chapter 3
Criteria for selecting repository mines... 61
R. Pusch
3.1 Introduction ... 61
3.2 Rock structure.. 62
 3.2.1 Crystalline rock... 62
 3.2.2 Argillaceous rock .. 62
 3.2.3 Salt rock ... 65
 3.2.4 Other rock types ... 67
3.3 Requirements for the use of mines as repositories... 67
 3.3.1 Function of the host rock.. 67
 3.3.2 Conversion of mines to repositories ... 67
 3.3.3 Size .. 68
 3.3.4 Remaining exploitable ore .. 68
3.3.5 Rock structure, hydrology, and stability ... 68
 3.3.5.1 General ... 68
 3.3.5.2 Rock structure modelling ... 69
3.3.6 Transport to and in the mine ... 70
3.3.7 Facilities and installations ... 71
3.3.8 Stabilization ... 71
3.3.9 Cost ... 71
3.4 Reference mines .. 72
 3.4.1 General ... 72
 3.4.2 Crystalline rock ... 72
 3.4.2.1 The Stripa Mine .. 72
 3.4.2.2 Regional rock structure .. 72
 3.4.2.3 Local rock structure .. 73
 3.4.2.4 Rooms .. 74
 3.4.2.5 Rock stress conditions .. 75
 3.4.2.6 Rock stability issues .. 76
 3.4.2.7 Hydrology in the far-field and near-field 77
 3.4.3 Salt and argillaceous rock ... 77

Chapter 4
Engineered barriers .. 79
R. Pusch
4.1 Types and characteristics of engineered barriers 80
 4.1.1 Clay ... 80
 4.1.1.1 Fundamental behaviour of clay/water systems 80
 4.1.1.2 Clay materials for waste isolation 82
4.2 Methods for constructing engineered barriers in underground mines ... 88
 4.2.1 Materials ... 88
 4.2.2 Preparation and application of smectite clay barriers 88
 4.2.2.1 Compaction of blocks ... 89
 4.2.2.2 Layerwise application and compaction 90
4.3 Maturation of smectite clay barriers .. 92
 4.3.1 Background .. 92
 4.3.2 Clay microstructure ... 92
 4.3.3 Hydration ... 93
 4.3.3.1 Mechanisms ... 93
 4.3.3.2 Rate of hydration ... 94
4.4 The source term .. 99
 4.4.1 Definitions ... 99
 4.4.2 Tests ... 99
 4.4.2.1 Alkaline batteries in Friedland Ton 99
 4.4.2.2 Chemical interaction of clay and corroded batteries 101
Chapter 6
Risk assessment of underground repositories using numerical
modelling of flow and transport in fractured rock .. 157
V. Popov & A. Peratta

6.1 Overview of the problem... 158
6.1.1 Scope and objectives... 158
6.1.2 Fractured porous media .. 159
6.1.3 Overview... 159
 6.1.3.1 The continuum approach... 159
 6.1.3.2 The very near field zone.. 159
 6.1.3.3 The near field flow .. 159
 6.1.3.4 The far field model.. 160
 6.1.3.5 The very far field model.. 160
 6.1.3.6 The discrete fracture model....................................... 160
6.1.4 Historical development of porous media modelling 161

6.2 Governing equations.. 162
6.2.1 Flow .. 162
 6.2.1.1 General formulation .. 162
 6.2.1.2 Flow in the porous matrix ... 163
 6.2.1.3 Flow in a single fracture.. 163
 6.2.1.4 Fracture intersections .. 164
 6.2.1.5 Flow in pipe connectors.. 165
6.2.2 Transport... 165
 6.2.2.1 General formulation .. 166
 6.2.2.2 Transport in the porous matrix.................................... 167
 6.2.2.3 Transport in a single fracture 167
 6.2.2.4 Transport in pipes.. 167
 6.2.2.5 Transport in pipe connectors....................................... 168

6.3 Numerical method ... 168
6.3.1 Introduction... 168
6.3.2 The boundary element method ... 168
 6.3.2.1 Integral formulation .. 168
 6.3.2.2 Boundary discretization .. 170
 6.3.2.3 Internal solution .. 172
6.3.3 The dual reciprocity method... 172
 6.3.3.1 General approach ... 173
 6.3.3.2 Radial basis functions ... 174
 6.3.3.3 The reaction term .. 175
 6.3.3.4 The convective term.. 175
 6.3.3.5 Time integration scheme.. 176
 6.3.3.6 Domain decomposition and DRM–MD...................... 176

6.4 Computational implementation ... 178
6.5 Results ... 180
 6.5.1 Types of geological media considered 181
6.5.2 The waste types considered .. 181
 6.5.2.1 Dichlorvos ... 181
 6.5.2.2 Zinc ... 182
 6.5.3 Case of mine and tunnel in crystalline rock 182
 6.5.3.1 Geometry definition .. 182
 6.5.3.2 Model discretization .. 184
 6.5.3.3 Parameter estimation ... 185
 6.5.3.4 Boundary and initial conditions 185
 6.5.3.5 Results for flow ... 187
 6.5.4 Case of disposal of dichlorvos in mine repository in crystalline rock... 189
 6.5.4.1 Modelling conditions for dichlorvos........................... 189
 6.5.4.2 Transport results for dichlorvos 190
 6.5.5 Case of disposal of zinc in mine repository in crystalline rock.. 196
 6.5.5.1 Modelling conditions for zinc..................................... 196
 6.5.5.2 Transport results for zinc .. 197
 6.5.6 Case of mine in limestone... 197
 6.5.6.1 Geometry definition .. 198
 6.5.6.2 Parameter estimation ... 198
 6.5.6.3 Boundary and initial conditions 198
 6.5.6.4 Results for flow ... 198
 6.5.7 Case of disposal of dichlorvos in mine repository in limestone... 199
 6.5.7.1 Modelling conditions for dichlorvos........................... 199
 6.5.7.2 Transport results for dichlorvos 200
 6.5.8 Case of disposal of zinc in mine repository in limestone........... 206
 6.5.8.1 Modelling conditions for zinc..................................... 206
 6.5.8.2 Transport results for zinc .. 206
 6.6 Risk assessment summary .. 207

Appendix to Chapter 2
A2.1 Austria .. 213
 A2.1.1 Active mines and mineral production................................... 213
 A2.1.2 Inactive mines .. 214
A2.2 Belgium .. 214
 A2.2.1 Active mines and mineral production................................... 214
 A2.2.2 Inactive mines .. 215
A2.3 Denmark .. 216
 A2.3.1 Active mines and mineral production................................... 216
 A2.3.2 Inactive mines .. 217
A2.4 Finland .. 217
 A2.4.1 Active mines and mineral production................................... 217
 A2.4.2 Inactive mines .. 223
A2.5 France ... 223
A2.5.1 Active mines and mineral production.. 223
A2.5.2 Inactive mines ... 225
A2.6 Germany .. 226
A2.6.1 Active mines and mineral production ... 226
A2.6.2 Inactive mines ... 227
A2.7 Greece .. 230
A2.7.1 Active mines and mineral production ... 230
A2.7.2 Inactive mines ... 233
A2.8 Ireland .. 235
A2.8.1 Active mines and mineral production ... 235
A2.8.2 Inactive mines ... 236
A2.9 Italy ... 236
A2.9.1 Active mines and mineral production ... 236
A2.9.2 Inactive mines ... 239
A2.10 Luxembourg .. 240
A2.10.1 Mines and mineral production ... 240
A2.11 Portugal .. 240
A2.11.1 Active mines and mineral production ... 240
A2.11.2 Inactive mines ... 244
A2.12 Spain ... 244
A2.12.1 Active mines and mineral production ... 244
A2.12.2 Inactive mines ... 248
A2.13 Sweden .. 250
A2.13.1 Active mines and mineral production ... 250
A2.13.2 Inactive mines ... 253
A2.14 The Netherlands .. 256
A2.14.1 Active mines and mineral production ... 256
A2.14.2 Inactive mines ... 256
A2.15 The United Kingdom ... 256
A2.15.1 Active mines and mineral production ... 256
A2.15.2 Inactive mines ... 258

Index .. 259