Advanced Computational Methods and Experiments in Heat Transfer X
TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS IN HEAT TRANSFER

HEAT TRANSFER X

CONFERENCE CHAIRMEN

B. Sundén
Lund University, Sweden

C.A. Brebbia
Wessex Institute of Technology, UK

INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE

R. Amano D. B. Ingham B. Sarler
G. Comini P. S. Larsen S. Sinkunas
G. De Mey J. Marn L. Skerget
S. del Giudice P. H. Oosthuizen A. C. M. Sousa
K. Domke M. Paul Y. Yan
A. Hossain B. Pavkovic S. Yanniotis
 D. W. Pepper

Organised by
Wessex Institute of Technology, UK
Lund University, Sweden

Sponsored by
The Development in Heat Transfer Book Series
Advanced Computational Methods and Experiments in

Heat Transfer X

Editors

B. Sundén
Lund University, Sweden

C. A. Brebbia
Wessex Institute of Technology, UK
B. Sundén
Lund University, Sweden

C.A. Brebbia
Wessex Institute of Technology, UK

Published by

WIT Press
Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK
Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853
E-Mail: witpress@witpress.com
http://www.witpress.com

For USA, Canada and Mexico

Computational Mechanics Inc
25 Bridge Street, Billerica, MA 01821, USA
Tel: 978 667 5841; Fax: 978 667 7582
E-Mail: infousa@witpress.com
http://www.witpress.com

British Library Cataloguing-in-Publication Data

A Catalogue record for this book is available from the British Library

ISBN: 978-1-84564-122-1
ISSN: 1746-4471 (print)
ISSN: 1743-3533 (online)

The texts of the papers in this volume were set individually by the authors or under their supervision. Only minor corrections to the text may have been carried out by the publisher.

No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. The Publisher does not necessarily endorse the ideas held, or views expressed by the Editors or Authors of the material contained in its publications.

© WIT Press 2008

Printed and bound in Great Britain by Cambridge Printing

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.
Research and developments of computational methods for solving and understanding heat transfer problems continue to be important because heat transfer topics are commonly of a complex nature and different mechanisms like heat conduction, convection, turbulence, thermal radiation and phase change may occur simultaneously. Typically, applications are found in heat exchangers, gas turbine cooling, turbulent combustion and fires, electronics cooling, melting and solidification etc. Heat transfer might be regarded as an established and mature scientific discipline, but it has played a major role in new application fields such as sustainable development and reduction of greenhouse gases as well as for micro- and nanoscale structures and bio-engineering. Non-linear phenomena other than momentum transfer may occur due to temperature-dependent thermophysical properties. In engineering design and development, reliable and accurate computational methods are requested to replace or complement expensive and time consuming experimental trial and error work. Tremendous advancements have been achieved during recent years due to improved numerical solutions of non-linear partial differential equations and computer developments to achieve efficient and rapid calculations. Nevertheless, to further progress in computational methods will require developments in theoretical and predictive procedures – both basic and innovative – and in applied research. Accurate experimental investigations are needed to validate the numerical calculations.

Many of the research topics were discussed during the Tenth International Conference on Advanced Computational Methods and Experimental Measurements in Heat Transfer held in Maribor, Slovenia in July 2008. The objective of this conference series is to provide a forum for presentation and discussion of advanced topics, new approaches and application of advanced computational methods and experimental measurements to heat and mass transfer problems. This book contains the edited versions of the papers presented at the Conference. All papers have been reproduced from material submitted by the authors but an attempt has been made to use a unified outline and presentation for each paper.

The editors would like to thank all the distinguished and well-known scientists
who supported our efforts by serving on the International Scientific Advisory Committee, reviewing the submitted abstracts and papers. The excellent administrative work of the conference secretariat at WIT is greatly appreciated and the efficient cooperation and encouragement by the staff at WIT Press contributed significantly in producing this excellent conference book.

Bengt Sundén and Carlos Brebbia
Maribor, 2008
Contents

Section 1: Natural and forced convection

Numerical investigation of transient single phase forced convection of nanofluids in circular tubes
V. Bianco, O. Manca & S. Nardini ...3

Numerical investigation of natural convection of air in vertical divergent channels
O. Manca, S. Nardini, D. Ricci & S. Tamburrino ...13

Section 2: Heat exchangers

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions
F. Selimovic & B. Sundén ..25

Scalar characteristics of a lean premixed turbulent V-shape flame (air-butane)
M. S. Boulahlib, S. Boukebbab, I. Amara & E. Ferkous37

Numerical simulation of incompressible laminar fluid flow in tubes with wire coil inserts
D. Muñoz-Esparza, J. Pérez-Garcia, E. Sanmiguel-Rojas,
A. García-Pinar & J. P. Solano-Fernández ..47

Section 3: Advances in computational methods

LBM mesoscale modelling of porous media
A. C. M. Sousa & A. Nabovati ..59
Chemical reacting transport phenomena and multiscale models for SOFCs
M. Andersson, J. Yuan & B. Sundén ... 69

Heat transfer between shell and rigid body through the thin heat-conducting layer taking into account mechanical contact
V. V. Zozulya .. 81

Section 4: Heat recovery

An experimental feasibility study of using diesel exhaust for space heating in Alaskan Villages
P. Raghupairu, C.-S. Lin, D. Witmer, E. Bargar, J. Schmid, T. Johnson & V. Avadhanula ... 93

Heat recovery with low temperature spray drying for thermochemical hydrogen production
V. N. Daggupati, G. F. Naterer & K. S. Gabriel ... 105

Section 5: Heat transfer

Peculiarities of heat transfer from in-line tube bundles to upward aqueous foam flow
J. Gylys, S. Sinkunas, B. Sundén, I. Gabrielaitiene & T. Zdankus 117

Heat transfer in reactive Co/Al nanolaminates
M. L. Hobbs, D. P. Adams & J. P. McDonald .. 127

Heat transfer and pressure drop experimentation inside single minichannels
A. Cavallini, S. Bortolin, D. Del Col, M. Matkovic & L. Rossetto 137

Section 6: Modelling and experiments

Advances in gas turbine blade cooling technology
R. S. Amano .. 149

Thermal investigation of light emitting diodes
K. Domke & K. Wandachowicz ... 159

Nucleate boiling flow – experimental investigations and wall heat flux modelling for automotive engine applications
H. Steiner, B. Breitschädel, G. Brenn, H. Petutschnig & C. Samhaber 169
Air curtains of open refrigerated display cases revisited: a new technique for infiltration rate measurements
M. Amin, H. K. Navaz, D. Dabiri & R. Faramarzi ... 179

Performance testing of reflective insulation applied in a prototype experimental chamber in Greece: experimental results for summer and winter periods

A measuring method based on photodiodes for the diagnostic of optimal combustion conditions
L. Arias, O. Farías, S. Torres & D. Sbárbaro ... 201

Author Index .. 211