Coastal Watershed Management
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. Gambolati</td>
<td>Universita di Padova</td>
<td>Italy</td>
</tr>
<tr>
<td>P. Holz</td>
<td>Brandenburg Technical University</td>
<td>Germany</td>
</tr>
<tr>
<td>K.L. Katsifarakis</td>
<td>Aristotle University of Thessaloniki</td>
<td>Greece</td>
</tr>
<tr>
<td>D. Koga</td>
<td>Saga University</td>
<td>Japan</td>
</tr>
<tr>
<td>L.F. Konikow</td>
<td>U S Geological Survey</td>
<td>USA</td>
</tr>
<tr>
<td>M.A. Losada</td>
<td>Universidad de Granada</td>
<td>Spain</td>
</tr>
<tr>
<td>K. Onishi</td>
<td>Ibaraki University</td>
<td>Japan</td>
</tr>
<tr>
<td>A.C. Rodrigues</td>
<td>Universidade Nova de Lisboa</td>
<td>Portugal</td>
</tr>
<tr>
<td>W.W-G. Yeh</td>
<td>University of California at Los Angeles</td>
<td>USA</td>
</tr>
<tr>
<td>B.C. Yen</td>
<td>University of Illinois at Urbana-Champaign</td>
<td>USA</td>
</tr>
</tbody>
</table>
Coastal Watershed Management

Edited by:

Ali Fares and Aly I. El-Kadi
University of Hawaii-Manoa, Hawaii
The authors are grateful to their families for their understanding, encouragement and assistance.

Fares dedicates this work to his wife Samira, daughters Amna and Sara, sons Othman and Ayoub, and parents Ahmed, Hassna and Yougouta.

El-Kadi dedicates this book to his wife Faten and children Shereen, Aladdin and Enjy.
Contents

Preface xvii

Chapter 1
Overview of the hydrological modeling of small coastal watersheds on tropical islands ... 1

A. Fares

1 Introduction .. 1

1.1 Characteristics of small coastal watersheds on tropical islands...... 2

2 Classification of models .. 3

3 Mathematical description of the components of hydrologic cycle 5

3.1 Precipitation ... 5

3.2 Evapotranspiration .. 6

3.3 Infiltration and subsurface flow ... 7

3.4 Surface flow ... 8

3.5 Subsurface and groundwater flow ... 11

4 Contaminant transport ... 11

4.1 Surface-water contamination .. 12

4.2 Soil erosion .. 12

4.3 Modeling soil erosion ... 13

4.4 Subsurface-water contamination .. 14

4.5 Solution techniques .. 15

5 Integrating GIS with watershed models ... 16

6 Performance of hydrologic model ... 17

6.1 Sensitivity analysis and model evaluation 17

6.2 Calibration and validation of models .. 18

7 Overview of available hydrologic models 19

8 Specific environmental problems in coastal watersheds............... 22

9 Applications of hydrologic models to coastal watersheds: case studies ... 23

10 Summary .. 27
Types of coastal wetlands

3.1 Riparian wetlands

3.2 Tidal freshwater marshes

3.3 Tidal salt marshes

3.4 Mangroves

3.5 Seagrass beds

3.6 Coral reefs and kelp forests

Wetlands in different types of watersheds

Coverage and position of wetlands in a watershed

Methods for quantifying sediment accumulation in coastal wetlands

Role of coastal wetlands in trapping sediment

Methods for quantifying nutrient retention and transformation in coastal wetlands

Role of coastal wetlands in retaining and transforming nutrients

9.1 Retention and transformation of N and P in riparian wetlands

9.2 Retention and transformation of N and P in tidal marshes

9.3 Retention and transformation of N and P in mangroves

9.4 Retention and transformation of N and P in seagrass beds and coral reefs

Case study: comparison of soils from created, restored and natural wetlands

Future research needs and directions

Chapter 5

Fine particles in small steepland streams: physical, ecological, and human connections

Nira L. Salant & Marwan A. Hassan

1 Introduction

2 Sources, supply mechanisms, and source identification

2.1 Fine particle sources

2.2 Source identification

2.3 Impact of human activities on sources

3 Particle transport, deposition, and streambed infiltration

3.1 Fine particle transport and vertical movement in the water column

3.2 Fine particle deposition, retention and infiltration in the streambed

3.3 Measuring fine particle transport and infiltration

3.4 Models of vertical particle distribution and exchange

3.5 Impact of human activities on particle transport

4 Biological significance

4.1 Impacts of fine particle infiltration into the streambed and hyporheic zone
Chapter 8
Effects of land-use changes and groundwater pumping on saltwater intrusion in coastal watersheds

Ahmet Dogan & Ali Fares

1. Introduction ... 219
2. Concept of saltwater intrusion in coastal aquifers 220
3. Hydraulic approaches to treatment of saltwater intrusion 222
 3.1 Sharp-interface approach ... 224
 3.2 Variable-density and dispersion approach 226
4. Numerical models and case studies .. 229
5. Land-use changes and groundwater pumping 235
6. Tidal effects and sea-level rise on saltwater intrusion in coastal aquifers .. 238
7. Control and management of saltwater intrusion 239
8. Summary and conclusion .. 242

Chapter 9
Restoration and protection plan for the Nawiliwili Watershed, Kauai, Hawaii, USA

Aly I. El-Kadi, Monica Mira, James E.T. Moncur & Roger S. Fujioka

1. Introduction ... 251
2. Nawiliwili watershed assessment .. 253
 2.1 The watershed .. 253
 2.2 Water-quality problems and sources of contaminants 253
 2.3 Severity of water-quality problem 256
3. Strategies and actions for improving water quality in the Nawiliwili Watershed ... 259
 3.1 Managing stormwater runoff and quality 259
 3.2 Preventing soil erosion and sedimentation from agricultural lands .. 260
 3.3 Updating land-use maps ... 262
 3.4 Promoting water recycling and conservation practices 262
 3.5 Enforcing and revising current water-quality policies and regulations ... 263
 3.6 Integrating the ahupuaa concept with modern watershed management ... 264
 3.7 Controlling invasive and non-native species 264
 3.8 Encouraging collaboration among various agencies 265
 3.9 Developing a water budget for the watershed 265
4. Expected load reductions due to management measures 266
5. Economic implications and management of the watershed plan 267
5.1 Preliminary considerations ... 267
5.2 Costs of remediation of septic tanks and sewer systems 268
5.3 Costs of other recommended remediation efforts...................... 270
5.4 Potential funding sources .. 270
5.5 Restoration and protection plan management 271
6 Developing and implementing education and outreach programs 274
7 Priorities and schedule of plan implementation 275
 7.1 Priorities .. 275
 7.2 Schedule of plan implementation .. 276
8 Measures for evaluating plan success .. 277
9 Plan evaluation ... 277
 9.1 Criteria for success of load-reduction strategies 277
 9.2 Revision of plan and program implementation 277
10 Monitoring plan .. 278
 10.1 Data management ... 278
 10.2 Water-quality sampling ... 278
 10.3 Watershed assessment ... 279
 10.4 Quality assurance ... 279

Chapter 10
Estimating the benefits from restoring coastal ecosystems: a case study of Biscayne Bay, Florida .. 283
Donna J. Lee & Anafrida B. Wenge

1 Introduction ... 283
2 Cost of invasive plants in the US ... 284
3 Restoring coastal ecosystems in Biscayne Bay: a case study 285
4 Description of Biscayne Bay restoration costs 287
 4.1 Wetland project costs ... 287
 4.2 Island project costs ... 289
 4.3 Total project cost ... 289
 4.4 Estimated maintenance cost ... 289
5 Assessing the benefits from restoring Biscayne Bay 289
 5.1 Environmental valuation methods .. 289
 5.2 Coastal ecosystem values from previous studies 291
6 Applying benefits transfer to Biscayne Bay restoration 292
7 Net benefits from the Biscayne Bay restoration projects 294
8 Summary ... 296

Chapter 11
The economic value of watershed conservation 299
Brooks Kaiser, Basharat Pitafi, James Roumasset & Kimberly Burnett

1 Introduction ... 299
2 Direct benefits of watershed conservation: the Pearl Harbor aquifer . 301
3 Indirect benefits of watershed conservation: near-shore resources .. 303
Chapter 12
Impact of best management practices in a coastal watershed 333
K.T. Morgan

Chapter 13
Waterborne zoonoses and changes in hydrologic response
due to watershed development... 349
Mark Walker, Bruce Wilcox & Mayee Wong

1 Introduction ... 350
1.1 Physical setting ... 353
Chapter 14
The Waiāhole Ditch: a case study of the management and regulation of water resources in Hawai‘i

L.H. Miike

1 The Waiāhole Ditch ... 369
2 Windward streams affected by the ditch system 373
 2.1 Stream flows ... 373
 2.2 Stream ecology .. 376
 2.3 Historical and cultural significance 377
3 The Waiāhole Ditch contested case .. 379
 3.1 Events leading to the contested case 379
 3.2 Hawai‘i water law prior to the Waiāhole decisions 380
 3.3 The contested case and Hawai‘i Supreme Court reviews ... 383
4 Future water-resource issues .. 391

Index 403
Preface

Coastal watersheds differ from others by their unique features, including proximity to the ocean, weather and rainfall patterns, subsurface features, and land covers. Land use changes and competing needs for valuable water and land resources are especially more distinctive to such watersheds. Surface water is a valued resource of significant economic, ecologic, cultural, and aesthetic importance. Streams supply irrigation water and can be the main source of drinking water in some places. Streams also provide important habitats for many unique native species. Water quality of receiving waters, such as estuaries, bays, and nearshore waters, are negatively impacted by stream chemical, biological, and sediment pollutants. Coastal groundwater aquifers are negatively affected by land use changes, with associated reduction in recharge and increase in chemical use, and are subjected to the threat of saltwater intrusion. Limited water resources and concerns regarding water quality necessitate the need for best management practices. Watershed problems and pertinent management practices are site specific with conditions that drastically change based on the watershed nature. Hence, there is need for a better understanding of the various physical, chemical, and biological processes involved.

This book covers recent research relevant to coastal watersheds. It addresses the impact of stream chemical, biological, and sediment pollutants on the quality of receiving waters, such as estuaries, bays, and near-shore waters. The contents of the book can be divided into three sections; a) overview of hydrological modeling, b) water quality assessment, and c) watershed management. Chapter 1 presents a general overview of hydrological modeling with emphasis on tropical watershed hydrology. Water quality of coastal watersheds is discussed in chapters 2 through 5. Nutrient bioavailability via runoff from agricultural soils in a watershed in Australia is presented in chapter 2. Chapter 3 explores sediment tracing techniques including artificial and cosmogenic radionuclides, exotic particles, fingerprinting, and rare earth elements. Chapter 4 discusses the importance of and threats to coastal wetlands. Chapter 5 reviews four components of fine particle dynamics: sources and supply mechanisms; in-stream transport and deposition; biological impacts; and spatial and temporal scales of study and variability. Watershed management issues include effect of nitrogen best management practices on water quality (Chapter 6); effects of changing land use on nutrient loads and water quality (Chapter 7), effects of land use changes and groundwater pumping on salt water intrusion
(Chapter 8); a restoration and protection plan for a coastal watershed (Chapter 9); estimation of benefits from restoring coastal ecosystems (Chapter 10), economic value of watershed conservation (Chapter 11); and impact of best management practices in coastal watershed (Chapter 12). Two case studies are also presented in this book. Chapter 13 explores the link between watershed development, hydrologic response and increased risk of waterborne disease as a result of flooding and presence of commensal rodents chronically infected with leptospirosis in a Hawaii watershed. Chapter 14 presents a protection and restoration plan for a watershed in Hawaii which can serve as a model for many similar areas.

This book differs from other hydrology books by dealing with coastal watersheds which are characterized by their unique features concerning weather and rainfall patterns, subsurface characteristics, and land use and cover. In addition to academia, the book should be of interest to organizations concerned with watershed management, such as local and federal governments and environmental groups. Although the book covers coastal regions, it should be of importance to wide range of readers working in other environments. Most contents in the book require minimum background in hydrology, but some chapters require familiarity with hydrological processes, modeling, and watershed management. Overall, the book is expected to satisfy a great need toward understanding and managing critical areas in many parts of the world.

A. Fares & A.I. El-Kadi

University of Hawaii-Manoa, Hawaii
Many people cooperated and assisted in completing this work. Their vital suggestions and critical reviews have improved the clarity and contents of this book. The authors are grateful and thankful to these colleagues for their contribution to the success of this work. Following is list of the names of these colleagues arranged alphabetically:

- Younes Alila, Associate Professor, Hydrology and Watershed Management, Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia Canada.
- Mark Brinson, Professor, Biology Department, East Carolina University.
- Williamson B.C Chang, Professor, William S. Richardson School of Law, University of Hawaii at Manoa.
- Chris Craft, Associate Professor, School of Public and Environmental Affairs, Indiana University.
- Roger S. Fujioka, Professor, Water Resources Research Center, University of Hawaii at Manoa.
- Stephen B. Gingerich, Research Hydrologist, United States Geological Survey, Honolulu, Hawaii.
- Mary Kentula, Wetland Ecologist, EPA Western Ecology Division, Corvallis, Oregon.
- Stephen Lau, Emeritus Professor, University of Hawaii at Manoa.
- Greg Noe, Scientist USGS, 430 National Center, Reston, VA USA.
- Paul F. Pedone, USDA-NRCS Oregon State Geologist, Oregon NRCS State Office, Portland, OR.
- Joy Zedler, Professor of Botany and Aldo Leopold Chair in Restoration Ecology, Botany Department, University of Wisconsin-Madison.

Special thanks are extended to Farhat Abbas and Ahmet Dogan for their assistance in organizing the material presented in this book. The authors are also thankful to Alan Mair, Amjad Ahmad, Nghia D. Tran, Mohammad Safeeq, and Chui Cheng for their help during editing process of this work.