Earthquake Resistant Engineering Structures VI
SIXTH WORLD CONFERENCE ON
EARTHQUAKE RESISTANT ENGINEERING STRUCTURES

ERES VI

CONFERENCE CHAIRMAN

C.A. Brebbia
Wessex Institute of Technology, UK

INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE

Y. Ariga M. Haroun J.M. Nichols
T. Attard A. Kappos C.W. Roeder
D. E. Beskos H. Kawakami M. Saidi
S. Dristos P. Komodromos E.J. Sapountzakis
G. Dundulis G.G. Manolis O. Sircovich Saar
M. Elgawady G.C. Manos C.C. Spyrokos
K. Fuchida

Organised by
Wessex Institute of Technology, UK

Sponsored by
WIT Transactions on The Built Environment
WIT Transactions on The Built Environment

Transactions Editor

Carlos Brebbia
Wessex Institute of Technology
Ashurst Lodge, Ashurst
Southampton SO40 7AA, UK
Email: carlos@wessex.ac.uk

Editorial Board

E Alarcon
Universidad Politecnica de Madrid
Spain

S A Anagnostopoulos
University of Patras
Greece

H Antes
Technische Universitat Braunschweig
Germany

D E Beskos
University of Patras
Greece

F Butera
Politecnico di Milano
Italy

J Chilton
University of Nottingham
UK

M C Constantinou
State University of New York at Buffalo
USA

A De Naezer
Universiteit Ghent
Belgium

J Dominguez
University of Seville
Spain

M N Fardis
University of Patras
Greece

L Gaul
Universitat Stuttgart
Germany

M Iguchi
Science University of Tokyo
Japan

W Jager
Technical University of Dresden
Germany

C Alessandri
Universita di Ferrara
Italy

E Angelino
A.R.P.A. Lombardia
Italy

D Aubry
Ecole Centrale de Paris
France

J J Bommer
Imperial College London
UK

P G Carydis
National Technical University of Athens
Greece

S Clement
Transport System Centre
Australia

G Degrande
Katholieke Universiteit Leuven
Belgium

W P De Wilde
Vrije Universiteit Brussel
Belgium

F P Escrig
University of Seville
Spain

C J Gantes
National Technical University of Athens
Greece

Y Hayashi
Nagoya University
Japan

L Int Panis
VITO Expertisecentrum IMS
Belgium

C M Jefferson
University of the West of England
UK
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>D L Karabalis</td>
<td>University of Patras</td>
<td>Greece</td>
</tr>
<tr>
<td>W Jager</td>
<td>Technical University of Dresden</td>
<td>Germany</td>
</tr>
<tr>
<td>W B Kratzig</td>
<td>Ruhr Universitat Bochum</td>
<td>Germany</td>
</tr>
<tr>
<td>J W S Longhurst</td>
<td>University of the West of England, UK</td>
<td>UK</td>
</tr>
<tr>
<td>E Kausel</td>
<td>Massachusetts Institute of Technology</td>
<td>USA</td>
</tr>
<tr>
<td>A N Kounadis</td>
<td>National Technical University of Athens</td>
<td>Greece</td>
</tr>
<tr>
<td>A A Liolios</td>
<td>Democritus University of Thrace</td>
<td>Greece</td>
</tr>
<tr>
<td>J E Luco</td>
<td>University of California at San Diego</td>
<td>USA</td>
</tr>
<tr>
<td>L Lundqvist</td>
<td>Unit for Transport and Location Analysis</td>
<td>Sweden</td>
</tr>
<tr>
<td>G D Manolis</td>
<td>Aristotle University of Thessaloniki</td>
<td>Greece</td>
</tr>
<tr>
<td>F M Mazzolani</td>
<td>University of Naples “Federico II”</td>
<td>Italy</td>
</tr>
<tr>
<td>G Oliveto</td>
<td>Università di Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>A S Papageorgiou</td>
<td>Rensselaer Polytechnic Institute</td>
<td>USA</td>
</tr>
<tr>
<td>A M Reinhorn</td>
<td>State University of New York at Buffalo</td>
<td>USA</td>
</tr>
<tr>
<td>C W Roeder</td>
<td>University of Washington</td>
<td>USA</td>
</tr>
<tr>
<td>M Saidi</td>
<td>University of Nevada-Reno</td>
<td>USA</td>
</tr>
<tr>
<td>S A Savidis</td>
<td>Technische Universitat Berlin</td>
<td>Germany</td>
</tr>
<tr>
<td>Q Shen</td>
<td>Massachusetts Institute of Technology</td>
<td>USA</td>
</tr>
<tr>
<td>P D Spanos</td>
<td>Rice University</td>
<td>USA</td>
</tr>
<tr>
<td>H Takemiya</td>
<td>Okayama University</td>
<td>Japan</td>
</tr>
<tr>
<td>E Taniguchi</td>
<td>Kyoto University</td>
<td>Japan</td>
</tr>
<tr>
<td>M A P Taylor</td>
<td>University of South Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>E Oñate</td>
<td>Universitat Politeneica de Catalunya</td>
<td>Spain</td>
</tr>
<tr>
<td>G G Penelis</td>
<td>Aristotle University of Thessaloniki</td>
<td>Greece</td>
</tr>
<tr>
<td>F Robuste</td>
<td>Universitat Politeneica de Catalunya</td>
<td>Spain</td>
</tr>
<tr>
<td>J M Roesset</td>
<td>Texas A & M University</td>
<td>USA</td>
</tr>
<tr>
<td>F J Sanchez-Sesma</td>
<td>Instituto Mexican del Petroleo</td>
<td>Mexico</td>
</tr>
<tr>
<td>J J Sendra</td>
<td>University of Seville</td>
<td>Spain</td>
</tr>
<tr>
<td>A C Singhal</td>
<td>Arizona State University</td>
<td>USA</td>
</tr>
<tr>
<td>C C Spyrakos</td>
<td>National Technical University of Athens</td>
<td>Greece</td>
</tr>
<tr>
<td>I Takewaki</td>
<td>Kyoto University</td>
<td>Japan</td>
</tr>
<tr>
<td>J L Tassoulas</td>
<td>University of Texas at Austin</td>
<td>Japan</td>
</tr>
<tr>
<td>R Tremblay</td>
<td>Ecole Polytechnique</td>
<td>Canada</td>
</tr>
</tbody>
</table>
Preface

This book contains selected papers presented at the 6th International Conference on Earthquake Resistant Engineering Structures (ERES) which took place in Bologna, Italy in 2007. This meeting is one of the successful series of conferences organised by the Wessex Institute of Technology (WIT). The series started in Thessaloniki (1996), followed by Catania (1999), Malaga (2001), Ancona (2003) and Skiathos (2005).

The meeting provides a forum for the discussion of the latest developments in innovative design and construction of new earthquake resistant structures as well as the retrofitting of existing buildings. The success of the ERES Conference is closely linked to the innovation and quality of the presentations. It continues to attract promising young researchers as well as familiar names in the field of earthquake engineering. This combination is the main reason why the ERES meetings continue to bring to the attention of the international scientific community original high quality papers.

The importance of conferences like ERES is that they allow rapid dissemination of the latest research before the lengthy process of appearing in learned journals is undertaken. The WIT proceedings – which are produced in time for the conference – are immediately followed by the archiving of all papers in the Transactions of Wessex Institute Library where they are permanently and widely available (www.witpress.com). The Library contains all WIT conference papers since 1993 and attracts nearly a quarter of a million abstract downloads per year. The importance of this archive can not be overemphasised as it is essential for researchers and practitioners to have rapid access to the latest developments, particularly in fields such as earthquake engineering.

The ERES/07 papers appearing in the present book have been divided into the following sections:

- Earthquake resistant design
- Bridges
- Seismic isolation
- Passive protection devices and seismic isolation
- Self-centering systems
- Site effects and geotechnical aspects
- Seismic behaviour and vulnerability
• Lifelines
• Monitoring and testing
• Retrofitting
• Structural dynamics

The Editor appreciates that the task of editing this volume would not have been possible without the generous cooperation of the members of the International Scientific Advisory Committee and other colleagues to whom he is indebted for reviewing the papers. He is also grateful to all authors for their excellent contributions.

The Editor
Bologna, Italy
2007
Contents

Keynote contribution

A road map for seismic prevention of damage
M. Maugeri & S. Grasso ... XIX

Section 1: Earthquake resistant design

Vulnerability functions and the influence of seismic design parameters on initial costs for buildings provided with hysteretic energy-dissipating devices
J. García-Pérez, M. Zenteno & O. Díaz ... 3

Seismic behavior over-resistance effects on buildings
J. A. Avila ... 13

Design of reinforced concrete buildings according to the new NEHRP provisions
O. A. Mohamed & P. Khamwan ... 23

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels
K. Numayr & R. Haddad .. 33

Designing aspects of bridges placed in active seismic areas
V. Herak Marović, P. Marović & Ž. Nikolić ... 43

Behaviour of coupling beams having vertical slits at the ends
S. B. Yuksel ... 53

Principal stresses behaviour of a steel plate shear wall concerning buckling modes
P. Memarzadeh, M. Azhari & M. M. Saadatpour ... 63
Earthquake architecture as an expression of a stronger architectural identity in seismic areas
T. Slak & V. Kilar..73

Section 2: Bridges

Aspects of testing a large-scale two-span bridge model on multiple shake tables
N. Johnson, M. Saiidi & D. Sanders ...85

Seismic devices for bridges
D. Mestrovic & G. Grebenar ...95

Section 3: Seismic isolation
(Special session by P. Komodromos and M. C. Pochas)

Seismic isolation and energy dissipation: worldwide application and perspectives
A. Martelli ..105

Study of the seismic response of reinforced concrete isolated elevated water tanks
V. I. Fernández-Dávila, F. Gran & P. Baquedano ...117

Modeling of the structural impact of seismically isolated buildings
P. Polycarpou, L. Papaloizou, P. Komodromos & M. C. Phocas129

Section 4: Passive protection devices and seismic isolation

Aseismic study of a building with the efficiency-enhanced damping system
S. S. Ke, W. S. Li & B. J. Shih ..141

Introducing orthogonal roller pairs as an effective isolating system for low rise buildings
M. Hosseini & K. Kangarloo ...151

Section 5: Self-centering systems
(Special session by M. Elgawady)

Seismic response three-dimensional analyses of ten-story steel frames with column uplift
M. Midorikawa, T. Azuhata & T. Ishihara ..165
Shaking table test on seismic response of reduced-scale models of multi-story buildings allowed to uplift
T. Ishihara, T. Azuhata, K. Noguchi, K. Morita & M. Midorikawa.................................175

Self-centering behavior of unbonded precast concrete shear walls
B. Erkmen & A. E. Schultz ...185

Displacement ductility demand and strength reduction factors for rocking structures
M. Trueb, Y. Belmouden & P. Lestuzzi ...195

Section 6: Site effects and geotechnical aspects

The 2006 Yogyakarta earthquake – a preliminary study of deaths
J. M. Nichols ..207

Local seismic amplification analysis in the industrial area of Sulmona, Central Italy
A. Rinaldini, A. Grillo & A. Marino..215

Dynamic response of a large landslide during a strong earthquake
R. Meriggi & M. Del Fabbro ...225

Liquefaction potential evaluation for a site
S. Mittal & M. K. Gupta ...235

Section 7: Seismic behaviour and vulnerability

Seismic risk assessment of the Ignalina NPP refuelling machine
R. Bausys, G. Dundulis, R. Kacianauskas, D. Markauskas, S. Sliaupa, E. Stupak & S. Rimkevicius..247

Comparing static linear and nonlinear analyses of safe rooms in a poor performance masonry building
M. Mazloom ..259

Empirical fragility curves for Peruvian school buildings
A. Muñoz, M. Blondet, R. Aguilar & M.-A. Astorga..269

Evaluation of lateral load pattern in pushover analysis
S. I. Javadein & R. Taghinezhad..279
3-D reproduction analyses for actual earthquake behaviors of existing dams
Y. Ariga ..289

Seismic hazard expression in risk assessment
X.-X. Tao, Z.-R. Tao & P. Li ..299

Section 8: Lifelines

Seismic reliability and cost evaluation for a hospital lifeline network system
K. Fuchida ..309

Human life saving lifelines and cost-effective design of an exclusive water supply system for fires following earthquakes
S. Takada & Y. Kuwata ..319

Section 9: Monitoring and testing

Shaking table tests on shallow foundations
J. Estaire & V. Cuéllar ..331

Development of a digitally-controlled single-axis earthquake shake frame for masonry walls testing
M. J. Guzman & S. L. Lissel ..343

Determination of seismic transport effects on buildings
D. Makovička & D. Makovička Jr. ..353

Section 10: Retrofitting

Towards a European code for seismic assessment and strengthening of existing buildings
S. Dritsos ...365

Flexural retrofitting of reinforced concrete bridge pier type cross-sections with carbon fiber reinforcing plastics
G. C. Manos & V. Kourtides ...375

Evaluating the retrofitting process for Imam (Soltani) Mosque monument after Silakhor Plan earthquake damage (31 March 2006)
H. R. Vosoughifar ..387
Effect of connection procedures on the behaviour of RC columns strengthened with RC layers and jackets
A. P. Lampropoulos, O. T. Tsioulou & S. E. Dritsos ..399

Seismic assessment of buildings by rapid visual screening procedures
P. Kapetana & S. Dritsos..409

Section 11: Structural dynamics

Three-dimensional seismic damage simulation of wooden houses using a rigid body-spring method
H. Kawakami, E. A. Tingatinga & H. Y. Chang ...421

Controlling nonlinear vibrations in steel structures using an evolutionary gain formulation to optimally satisfy performance objectives
R. Dansby & T. Attard ..431

Dynamic analysis of plates stiffened by parallel beams
E. J. Sapountzakis & V. G. Mokos ..443

Dynamics in the practice of structural design: the problems of implementation
O. S. Saar ..453

Effect of impulsive force on earthquake response of rocking structural systems
T. Azuhata, T. Ishihara & M. Midorikawa...459

Author Index ...469