Learning from Failure

Long-term Behaviour of Heavy Masonry Structures
International Series on Advances in Architecture

Objectives

The field of architecture has experienced considerable advances in the last few years, many of them connected with new methods and processes, the development of faster and better computer systems and a new interest in our architectural heritage. It is to bring such advances to the attention of the international community that this book series has been established. The object of the series is to publish state-of-the-art information on architectural topics with particular reference to advances in new fields, such as virtual architecture, intelligent systems, novel structural forms, material technology and applications, restoration techniques, movable and lightweight structures, high rise buildings, architectural acoustics, leisure structures, intelligent buildings and other original developments. The Advances in Architecture series consists of a few volumes per year, each under the editorship - by invitation only - of an outstanding architect or researcher. This commitment is backed by an illustrious Editorial Board. Volumes in the Series cover areas of current interest or active research and include contributions by leaders in the field.

Managing Editor

F. Escrig
Escuela de Arquitectura
Universidad de Sevilla
Spain

Honorary Editors

C. A. Brebbia
Wessex Institute of Technology
UK

P. R. Vazquez
Estudio de Arquitectura
Mexico
Associate Editors

C. Alessandri
University of Ferrara
Italy

K. Ishii
Yokohama National University
Japan

F. Butera
Politecnico di Milano
Italy

W. Jäger
Technical University of Dresden
Germany

J. Chilton
University of Lincoln
UK

M. Majowiecki
University of Bologna
Italy

G. Croci
University of Rome, La Sapienza
Italy

S. Sánchez-Beitia
University of the Basque Country
Spain

A. de Naeyer
University of Ghent
Belgium

J. J. Sendra
Universidad de Sevilla
Spain

W. P. De Wilde
Free University of Brussel
Belgium

M. Zador
Technical University of Budapest
Hungary

C. Gantes
National Technical University of Athens
Greece

R. Zarnic
University of Ljubljana
Slovenia

K. Ghavami
Pontificia Univ. Catolica, Rio de Janeiro
Brazil
Learning from Failure

Long-term Behaviour of Heavy Masonry Structures

Editor:

L. Binda

Politecnico di Milano, Italy
Editor:

L. Binda
Politecnico di Milano, Italy
Contents

Preface ... xiii

Chapter 1
Failures due to long-term behaviour of heavy structures 1
L. Binda, A. Anzani & A. Saisi

1.1 Introduction .. 1
1.2 The collapse of the Civic Tower of Pavia: search for the cause 2
1.2.1 Description and historic evolution of the tower .. 3
1.2.2 First experimental results and interpretation of the failure causes 4
1.2.2.1 Structure and morphology of the walls .. 4
1.2.2.2 Geotechnical investigation ... 6
1.2.2.3 Physical, chemical and mechanical tests on the components 7
1.2.2.4 Compression tests on masonry prisms 8
1.2.3 Long-term tests ... 9
1.2.3.1 Fatigue tests .. 9
1.2.3.2 Constant load tests ... 11
1.3 Long-term behaviour of masonry structures ... 12
1.3.1 Deformation during mortar hardening ... 12
1.3.2 First, secondary and tertiary creep in rock and hardened masonry 15
1.4 Collapse and damage of towers due to long-term heavy loads 16
1.4.1 St. Marco bell-tower and St. Maria Magdalena tower in Goch 16
1.4.2 The bell-tower of Monza Cathedral and the Torrazzo of Cremona 16
1.5 The role of investigation on the interpretation of the damage causes 17
1.5.1 The bell-tower of the Cathedral of Monza ... 18
1.5.2 The ‘Torrazzo’ of Cremona ... 21
Chapter 2

Experimental researches into long-term behaviour of historical masonry

A. Anzani, L. Binda & G. Mirabella Roberti

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>29</td>
</tr>
<tr>
<td>2.2</td>
<td>Tests on the masonry of the Civic Tower of Pavia</td>
<td>31</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Characterization by sonic tests</td>
<td>33</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Monotonic tests on prisms of different dimensions</td>
<td>33</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Fatigue tests</td>
<td>35</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Creep tests on prisms of $300 \times 300 \times 510$ mm</td>
<td>36</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Pseudo-creep tests on prisms of $100 \times 100 \times 180$ mm</td>
<td>39</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Pseudo-creep tests on prisms of $200 \times 200 \times 350$ mm</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>Tests on the masonry of the crypt of the Cathedral of Monza</td>
<td>42</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Preparation of prisms of $200 \times 200 \times 350$ mm</td>
<td>42</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Characterization by sonic tests</td>
<td>44</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Monotonic tests</td>
<td>45</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Fatigue tests</td>
<td>45</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Creep test on one prism of $300 \times 300 \times 510$ mm</td>
<td>48</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Pseudo-creep tests, first series</td>
<td>48</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Pseudo-creep tests, second series</td>
<td>50</td>
</tr>
<tr>
<td>2.4</td>
<td>Comments</td>
<td>52</td>
</tr>
</tbody>
</table>

Chapter 3

Collapse prediction and creep effects

P.B. Lourenço & J. Pina-Henriques

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Short-term compression: failure analysis and collapse prediction using numerical simulations</td>
<td>58</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Experimental results</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Continuum model</td>
<td>59</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Particle model</td>
<td>62</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Discussion of the results</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Long-term compression: experimental assessment</td>
<td>66</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Tested specimens</td>
<td>66</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Standard compression tests</td>
<td>68</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Short-term creep tests</td>
<td>69</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Long-term creep tests</td>
<td>71</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Discussion of the results</td>
<td>74</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusions and future work</td>
<td>78</td>
</tr>
</tbody>
</table>
Chapter 4
Effects of creep on new masonry structures... 83
N.G. Shrive & M.M. Reda Taha

4.1 Introduction .. 83
4.2 The step-by-step in time approach to modeling
time-dependent effects ... 84
4.3 Case 1: An axially loaded column .. 85
 4.3.1 Creep model... 85
 4.3.2 Effect of coupling creep and damage in concentrically
 loaded columns .. 89
 4.3.3 Examining the effect of rehabilitation 91
4.4 Case 2: Composite structural element subject to bending 92
 4.4.1 Development of model ... 92
 4.4.2 Application to a beam ... 97
 4.4.3 Masonry walls subject to axial load and bending 103
4.5 New mathematical approaches to modeling creep 103
4.6 Discussion .. 104
4.7 Conclusions .. 105

Chapter 5
Experimental study on the damaged pillars
of the Noto Cathedral ... 109
A. Saiäi, L. Binda, L. Cantini & C. Tedeschi

5.1 Introduction .. 109
5.2 The collapse and the decision for reconstruction 109
5.3 On-site investigation on the remaining parts of the collapsed
pillars .. 110
 5.3.1 Layout of the section and of the masonry morphology........... 111
 5.3.2 General characterisation of the materials 111
 5.3.3 Damage description .. 114
 5.3.4 Laboratory testing .. 114
 5.3.4.1 Mortars ... 115
 5.3.4.2 Stones ... 115
 5.3.4.3 Injectability tests ... 117
 5.3.5 On-site tests ... 117
 5.3.5.1 Flat-Jack tests ... 117
 5.3.5.2 Application of sonic pulse velocity test to
 pillars ... 118
 5.3.6 Design decisions .. 119
 5.3.7 The dismantling of the remaining pillars 120
Chapter 6
Monitoring of long-term damage in long-span masonry constructions

P. Roca, G. Martínez, F. Casarin, C. Modena, P.P. Rossi, I. Rodríguez & A. Garay

6.1 Introduction ... 125
6.2 Monitoring and long-term damage .. 125
6.3 Role of monitoring in the study of ancient constructions 127
6.4 Monitoring: methodology and requirements 128
 6.4.1 Technology ... 128
 6.4.2 Distinction between dynamic and static monitoring 129
 6.4.3 Requirements .. 131
6.5 Measuring damage and deformation related to historical or long-term processes .. 133
 6.5.1 Monitoring and long-term damage 133
 6.5.2 Structural deformation ... 133
 6.5.3 Tensile damage in arches and vaults 135
 6.5.4 Damage of compressed members 135
 6.5.5 Fragmentation ... 139
6.6 Structural modelling and monitoring 140
6.7 Case studies ... 141
 6.7.1 Dynamic monitoring of Mallorca Cathedral 141
 6.7.2 S. Maria Assunta Cathedral, Reggio Emilia, Italy 145
 6.7.3 Vitoria Cathedral .. 148
6.8 Conclusions ... 151

Chapter 7
Modelling of the long-term behaviour of historical masonry towers

A. Taliercio & E. Papa

7.1 Introduction .. 153
7.2 A continuum damage model for masonry creep 154
 7.2.1 Unidimensional viscoelastic model with damage 154
 7.2.2 Three-dimensional viscoelastic model with damage 157
 7.2.3 Identification of the model parameters and comparisons with experimental results 160
7.3 Structural analyses of two masonry towers 166
 7.3.1 The Civic Tower of Pavia .. 166
 7.3.2 The bell-tower of Monza Cathedral 167
7.4 Remarks and future perspectives ... 171
Chapter 8
Repair techniques and long-term damage of massive structures 175
C. Modena & M.R. Valluzzi

8.1 Introduction ... 175
8.2 The bed reinforcement technique .. 176
8.3 The experimental campaigns .. 178
 8.3.1 Laboratory tests on the use of stainless steel bars 179
 8.3.2 Laboratory tests on the use of CFRP bars and thin strips ... 183
8.4 Case studies ... 197
 8.4.1 The bell-tower of the Basilica of S. Giustina in Padua 197
 8.4.2 The pillars of S. Sofia church in Padua 199
 8.4.3 The bell-tower of S. Giovanni Battista Cathedral in Monza (Milan) .. 199
8.5 Final remarks ... 201

Chapter 9
Simple checks to prevent the collapse of heavy historical structures and residual life prevision through a probabilistic model 205
L. Binda, A. Anzani & E. Garavaglia

9.1 Introduction ... 205
9.2 The safety of ancient towers .. 205
 9.2.1 A survey on Italian cases ... 206
 9.2.2 Comments on the observed crack patterns 206
 9.2.3 Elaboration of the collected data 209
9.3 A probabilistic model for the assessment of historic buildings 210
9.4 Fragility curves from the experimental data 215
 9.4.1 Fragility curve versus σ applied to creep tests 215
 9.4.2 Comparison between vertical and horizontal strain-rate ... 215
 9.4.3 Fragility curve versus σ applied to pseudo-creep tests 216
 9.4.4 Comparison between vertical and horizontal strain-rate 218
9.5 Application to the bell-tower of Monza 219
9.6 Conclusions ... 221

Conclusions .. 225
Preface

On March 17 1989, the Civic Tower of Pavia collapsed without any apparent warning signs – killing four people. Subsequently, L. Binda, together with four colleagues from DIS, Politecnico of Milan, was nominated a member of a Committee that had the aim of helping the Prosecutor of the Procura della Repubblica in Milan find the causes of the collapse. After an experimental and analytical investigation lasting nine months, the collapse cause was found. Progressive damage dating back many years, due mainly to the heavy dead load put on top of the existing medieval tower with the addition of a massive bell-tower in granite, was to blame.

This type of long-term behaviour of masonry structures was not as well researched as it was for concrete and steel structures and for rocks. Experimental research aimed at showing the reliability of this interpretation was carried out, and is still continuing, that is more than sixteen years of research since 1989. After careful interpretation of the experimental results, also based on experiences from rock mechanics and concrete, the modelling of the phenomenon for massive structures, such as creep behaviour of masonry, was implemented by collaboration with E. Papa and A. Taliercio from the same department.

Other case histories were collected such as the collapse of the Sancta Maria Magdalena bell-tower in 1992 in Dusseldorf, the damage to the bell-tower of the Monza Cathedral, Italy, and to the Torrazzo in Cremona, Italy. Later on, in 1996 the collapse of the Noto Cathedral, Italy, showed that similar progressive damage can take place in pillars of churches and cathedrals.

Collaborations on the topic first started with the University of Padua (C. Modena) and later on with the University of Minho, Portugal (P. Lourenco). Then the University of Calgary, Canada (N. Shrive) and the University of Barcelona (P. Roca) were involved.

The editor would like to thank the technicians Mr Antico, Mr Cucchi and Mr Iscandri for their collaboration in the experimental research and Mrs C. Arcadi for her help in the editing of the chapters.

The Editor
2007