Plate Heat Exchangers

WIT*PRESS*

WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles. www.witpress.com

WIT*eLibrary*

Home of the Transactions of the Wessex Institute, the WIT electronic-library provides the international scientific community with immediate and permanent access to individual papers presented at WIT conferences. Visit the WIT eLibrary at http://library.witpress.com

International Series on Developments in Heat Transfer

Objectives

The Developments in Heat Transfer book Series publishes state-of-the-art books and provides valuable contributions to the literature in the field of heat transfer. The overall aim of the Series is to bring to the attention of the international community recent advances in heat transfer by authors in academic research and the engineering industry.

Research and development in heat transfer is of significant importance to many branches of technology, not least in energy technology. Developments include new, efficient heat exchangers, novel heat transfer equipment as well as the introduction of systems of heat exchangers in industrial processes. Application areas include heat recovery in the chemical and process industries, and buildings and dwelling houses where heat transfer plays a major role. Heat exchange combined with heat storage is also a methodology for improving the energy efficiency in industry, while cooling in gas turbine systems and combustion engines is another important area of heat transfer research.

To progress developments within the field both basic and applied research is needed. Advances in numerical solution methods of partial differential equations, high-speed, efficient and cheap computers, advanced experimental methods using LDV (laser-doppler-velocimetry), PIV (particleimage-velocimetry) and image processing of thermal pictures of liquid crystals, have all led to dramatic advances during recent years in the solution and investigation of complex problems within the field.

The aims of the Series are achieved by contributions to the volumes from invited authors only. This is backed by an internationally recognised Editorial Board for the Series who represent much of the active research worldwide. Volumes planned for the series include the following topics: Compact Heat Exchangers, Engineering Heat Transfer Phenomena, Fins and Fin Systems, Condensation, Materials Processing, Gas Turbine Cooling, Electronics Cooling, Combustion-Related Heat Transfer, Heat Transfer in Gas-Solid Flows, Thermal Radiation, the Boundary Element Method in Heat Transfer, Phase Change Problems, Heat Transfer in Micro-Devices, Plateand-Frame Heat Exchangers, Turbulent Convective Heat Transfer in Ducts, Enhancement of Heat Transfer and other selected topics. Series Editor B. Sundén

Lund Institute of Technology Box 118 22100 Lund Sweden

Associate Editors

E. Blums Latvian Academy of Sciences Latvia

C.A. Brebbia Wessex Institute of Technology UK

G.Comini University of Udine Italy

R.M. Cotta COPPE/UFRJ Brazil

L. De Biase University of Milan Italy

G.De Mey University of Ghent Belgium

S. del Guidice University of Udine Italy

M. Faghri University of Rhode Island USA **P.J. Heggs** UMIST UK

C.Herman John Hopkins University USA

D.B. Ingham University of Leeds UK

Y.Jaluria Rutgers University USA

S. Kotake University of Tokyo Japan

D.B. Murray Trinity College Dublin Ireland

K. Onishi Ibaraki University Japan

P.H. Oosthuizen Queen's University Kingston Canada W. Roetzel Universtaet der Bundeswehr Germany

B. Sarler Nova Gorica Polytechnic Slovenia

A.C.M. Sousa University of New Brunswick Canada

D.B. Spalding CHAM UK **J. Szmyd** University of Mining and Metallurgy Poland

E. Van den Bulck Katholieke Universiteit Leuven Belgium

S. Yanniotis Agricultural University of Athens Greece

Plate Heat Exchangers

Design, Applications and Performance

L. Wang Siemens Industrial Turbines, Sweden

B. Sundén Lund Institute of Technology, Sweden

&

R.M. Manglik University of Cincinnati, USA

L. Wang Siemens Industrial Turbines, Sweden

B. Sundén Lund Institute of Technology, Sweden

R.M. Manglik

University of Cincinnati, USA

Published by

WIT Press

Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853 E-Mail: witpress@witpress.com http://www.witpress.com

For USA, Canada and Mexico

WIT Press

25 Bridge Street, Billerica, MA 01821, USA Tel: 978 667 5841; Fax: 978 667 7582 E-Mail: infousa@witpress.com http://www.witpress.com

British Library Cataloguing-in-Publication Data

A Catalogue record for this book is available from the British Library

ISBN: 978-1-85312-737-3 ISSN: 1369-7331

Library of Congress Catalog Card Number: 2002111282

No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/ or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. The Publisher does not necessarily endorse the ideas held, or views expressed by the Editors or Authors of the material contained in its publications.

© WIT Press 2007

Printed in Great Britain by Athenaeum Press Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.

Contents

Preface

Chapter 1	Basic features and development of plate heat exchangers	1
1.1	Introduction	1
1.2	Historical background	2
1.3	Basic principle	5
1.4	General characteristics	6
Chapter 2	Construction and operation	11
2.1	Gasketed heat exchanger	11
	2.1.1 Corrugated plate patterns	11
	2.1.2 Geometrical characterization of chevron-type	
	plates	15
2.2	Evolution of plate heat exchangers	17
	2.2.1 Brazed plate heat exchanger	17
	2.2.2 Semi-welded plate heat exchanger	18
	2.2.3 Fully welded plate heat exchanger	19
	2.2.4 Wide-gap plate heat exchanger	20
	2.2.5 Double-wall plate heat exchangers	20
	2.2.6 Diabon graphite plate heat exchanger	20
	2.2.7 Minex plate heat exchanger	21
2.3	Operation and selection	22
Chapter 3	Industrial applications	27
3.1	Food processing	27
3.2	Air-conditioning and refrigeration systems	29
3.3	Service heating and cogeneration	30
3.4	Offshore gas and oil applications	31
3.5	Marine applications	32
3.6	Chemical processing	33
3.7	Pulp and paper industry applications	36

3.8	Solar energy applications	37
3.9	Closing remarks	38
Chanton 4	Motorials and manufacturing	41
Chapter 4 4.1	Materials and manufacturing	41 41
4.1	Plate material	41
	Gasket material	-
4.3	Manufacturing	46
	4.3.1 Plate-and-frame heat exchangers	47
	4.3.2 Brazed heat exchangers	48
	4.3.3 Semi-welded plate heat exchangers	48
	4.3.4 Fully welded plate heat exchangers	49
Chapter 5	Basic design methods	51
5.1	Introduction	51
5.2	Basic energy balance and design equations	53
5.3	Thermal design methods	57
	5.3.1 Logarithmic mean temperature difference method	58
	5.3.2 The ε -NTU method	60
	5.3.3 The <i>P</i> –NTU method	63
	5.3.4 Sizing and rating procedure	63
5.4	Hydrodynamic design methods	65
5.5	Variable overall heat transfer coefficient	68
5.6	Thermal mixing	70
Chapter 6	Single- and multi-pass flow arrangement	77
6.1	Flow arrangement and distribution	77
011	6.1.1 Flow direction	77
	6.1.2 Pass	77
	6.1.3 Paths per pass	78
	6.1.4 Distribution along port manifolds	79
	6.1.5 Distribution inside channel	79
	6.1.6 End plate	80
6.2	Pass arrangement classification	81
6.3	General thermal model	86
6.4	Performance comparison	89
011	6.4.1 End-plate effect	89
	6.4.2 Passage arrangement and flow direction	90
	6.4.3 Number of transfer units	93
	6.4.4 Heat capacity flow rate ratio	93
6.5	Guidelines of pass selection	94
0.0	6.5.1 Best arrangement within individual arrangement	<i>/</i> r
	category	94
	6.5.2 Selecting best arrangement in all categories	97
6.6	Correction factors and effectiveness	98
0.0		20

Chapter 7	Thermal-hydraulic performance in single-phase flows	111
7.1	Introduction	111
7.2	Chevron-plate performance literature	113
7.3	Thermal-hydraulic characteristics	117
	7.3.1 Single-phase convection in $\beta = 0^{\circ}$ plate channels	117
	7.3.2 Single-phase convection in $\beta = 90^{\circ}$ plate channels	119
	7.3.3 Single-phase convection in $0^\circ < \beta < 90^\circ$ plate	
	channels	128
7.4	Heat transfer enhancement	133
Chapter 8	Thermal-hydraulic performance in condensers and	
	evaporators	143
8.1	Flow patterns	144
8.2	Performance of plate condensers	149
	8.2.1 Fundamental mechanism of condensation	149
	8.2.2 Condensation heat transfer	152
	8.2.3 Condensation pressure drop	158
8.3	Performance of plate evaporators	160
	8.3.1 Fundamental mechanism of evaporation	161
	8.3.2 Evaporation heat transfer	166
	8.3.3 Evaporation pressure drop	173
		101
Chapter 9	Fouling, corrosion, and erosion	101
Chapter 9 9.1	Fouling, corrosion, and erosion Fouling	
		182
	Fouling	182 182
	Fouling 9.1.1 Basic consideration	182 182 184
	Fouling	182 182 184 187
	Fouling	182 182 184 187 193
	Fouling	182 182 184 187 193 195
9.1	Fouling	182 182 184 187 193 195 196
9.1	Fouling	182 182 184 187 193 195 196 197
9.1	Fouling	182 182 184 187 193 195 196 197 198
9.1	Fouling	182 182 184 187 193 195 196 197 198 207
9.1 9.2	Fouling9.1.1Basic consideration9.1.2Fundamental mechanism9.1.3Forms of fouling9.1.4Mitigation of fouling9.1.5Design of PHEs subject to fouling0.1.5Design of PHEs subject to fouling9.2.1Fundamental mechanism9.2.2Forms of corrosion9.2.3Control of corrosion	182 182 184 187 193 195 196 197 198 207 208
9.1 9.2 9.3	Fouling9.1.1Basic consideration9.1.2Fundamental mechanism9.1.3Forms of fouling9.1.4Mitigation of fouling9.1.5Design of PHEs subject to fouling0.1.5Design of PHEs subject to fouling0.2.1Fundamental mechanism9.2.2Forms of corrosion9.2.3Control of corrosionErosionErosionErosionFlow distribution	 182 184 187 193 195 196 197 198 207 208 215
9.19.29.3Chapter 10	Fouling9.1.1Basic consideration9.1.2Fundamental mechanism9.1.3Forms of fouling9.1.4Mitigation of fouling9.1.5Design of PHEs subject to fouling0.1.5Design of PHEs subject to fouling0.2.1Fundamental mechanism9.2.2Forms of corrosion9.2.3Control of corrosionErosionErosionErosionFlow distribution	 182 184 187 193 195 196 197 198 207 208 215
9.19.29.3Chapter 10	Fouling	182 182 184 193 195 196 197 198 207 208 215 215 216
9.19.29.3Chapter 10	Fouling	182 182 184 193 195 196 197 198 207 208 215 216 220
9.1 9.2 9.3 Chapter 10 10.1	Fouling	182 182 184 187 193 195 196 197 198 207 208 215 216 220 225
9.1 9.2 9.3 Chapter 10 10.1	Fouling	182 182 184 187 193 195 196 197 198 207 208 215 216 220 225 225
9.1 9.2 9.3 Chapter 10 10.1	Fouling	182 182 184 187 193 195 196 197 198 207 208 215 215 216 220 225 225 226

10.3	Multi-stream plate heat exchangers	230
	10.3.1 Practical advantages	230
	10.3.2 Design options	231
	10.3.3 Thermal performance	232
10.4	Dynamic behaviour	234
10.5	Future developments	236

Appendix

243

Index

267

Preface

Heat exchangers are important, and used frequently in the processing, heat and power, air-conditioning and refrigeration, heat recovery, transportation and manufacturing industries. Such equipment is also important in electronics cooling and for environmental issues like thermal pollution, waste disposal and sustainable development. Various types of heat exchangers exist. In textbooks of heat transfer, commonly a brief chapter is provided for the introduction of heat exchangers and elementary theory of design, rating and sizing are presented. There also exist many books on heat exchangers either as textbooks or edited volumes. However, most such books treat a variety of heat exchanger types or specific problems and do not specialize in any particular heat exchanger type. Therefore, a lack of comprehensive and in-depth textbooks on specific heat exchangers exists.

The present book concerns plate heat exchangers (PHEs), which are one of the most common types in practice. The overall objectives are to present comprehensive descriptions of such heat exchangers and their advantages and limitations, to provide in-depth thermal and hydraulic design theory for PHEs, and to present state-of-the-art knowledge.

The book starts with a general introduction and historical background to PHEs, then discusses construction and operation (PHE types, plate pattern, etc.) and gives examples of PHEs in different application areas. Material issues (plates, gaskets, brazing materials) and manufacturing methods are also treated. The major part of the book concerns the basic design methods for both single-phase and two-phase flow cases, various flow arrangements, thermal-hydraulic performance in single-phase flow and for PHEs operating as condensers and evaporators. Fouling problems are also discussed and in a section on extended design and operation issues, modern Research and Development (R & D) tools like computational fluid dynamics (CFD) methods are discussed. Unique features for PHEs are discussed throughout.

Extensive R & D activities are carried out at companies and universities worldwide and originally this book was intended as an edited volume reflecting current research and state-of the-art. However, as time elapsed and the lack of a comprehensive textbook was identified, the objectives were changed.

We believe this book will be useful as both a textbook at various educational levels and as a reference source book for PHEs.

We are grateful to the companies providing us with a lot of information on their products and their R & D works. We also appreciate the cooperation and patience provided by the staff at WIT Press and for their encouragement and assistance in producing this book.

Lieke Wang, Raj M. Manglik and Bengt Sundén