Data Mining in E-Learning
Information and Communications Technologies have experienced considerable advances in the last few years. The task of managing and analysing ever-increasing amounts of data requires the development of more efficient tools to keep pace with this growth.

This series presents advances in the theory and applications of Management Information. It covers an interdisciplinary field, bringing together techniques from applied mathematics, machine learning, pattern recognition, data mining and data warehousing, as well as their applications to intelligence, knowledge management, marketing and social analysis. The majority of these applications are aimed at achieving a better understanding of the behaviour of people and organisations in order to enable decisions to be made in an informed manner. Each volume in the series covers a particular topic in detail.

The volumes cover the following fields:

- Information
- Information Retrieval
- Intelligent Agents
- Data Mining
- Data Warehouse
- Text Mining
- Competitive Intelligence
- Customer Relationship Management
- Information Management
- Knowledge Management
Series Editor

A. Zanasi
TEMIS Text Mining Solutions S.A.
Italy

Associate Editors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.L. Aquilar</td>
<td>University of Extremadura</td>
<td>Spain</td>
</tr>
<tr>
<td>M. Costantino</td>
<td>Royal Bank of Scotland Financial Markets</td>
<td>UK</td>
</tr>
<tr>
<td>P. Coupet</td>
<td>TEMIS</td>
<td>France</td>
</tr>
<tr>
<td>N.J. Dedios Mimbela</td>
<td>Universidad de Cordoba</td>
<td>Spain</td>
</tr>
<tr>
<td>A. De Montis</td>
<td>Universita di Cagliari</td>
<td>Italy</td>
</tr>
<tr>
<td>G. Deplano</td>
<td>Universita di Cagliari</td>
<td>Italy</td>
</tr>
<tr>
<td>P. Giudici</td>
<td>Universita di Pavia</td>
<td>Italy</td>
</tr>
<tr>
<td>D. Goulas</td>
<td>University of Maryland</td>
<td>USA</td>
</tr>
<tr>
<td>A. Gualtierotti</td>
<td>IDHEAP</td>
<td>Switzerland</td>
</tr>
<tr>
<td>J. Jaafar</td>
<td>UiTM</td>
<td>Malaysia</td>
</tr>
<tr>
<td>G. Loo</td>
<td>The University of Auckland</td>
<td>New Zealand</td>
</tr>
<tr>
<td>J. Lourenco</td>
<td>Universidade do Minho</td>
<td>Portugal</td>
</tr>
<tr>
<td>D. Malerba</td>
<td>Università degli Studi</td>
<td>UK</td>
</tr>
<tr>
<td>G. Nakhaeizadeh</td>
<td>DaimlerChrysler</td>
<td>Germany</td>
</tr>
<tr>
<td>P. Pan</td>
<td>National Kaohsiung University of Applied Science</td>
<td>Taiwan</td>
</tr>
</tbody>
</table>
J. Rao
Case Western Reserve University
USA

D. Riaño
Universitat Rovira I Virgili
Spain

J. Roddick
Flinders University
Australia

F. Rodrigues
Poly Institute of Porto
Portugal

F. Rossi
DATAMAT
Germany

D. Sitnikov
Kharkov Academy of Culture
Ukraine

R. Turra
CINECA Interuniversity Computing Centre
Italy

D. Van den Poel
Ghent University
Belgium

J. Yoon
Old Dominion University
USA

N. Zhong
Maebashi Institute of Technology
Japan

H.G. Zimmermann
Siemens AG
Germany
Data Mining in E-Learning

Editors

C. Romero
University of Cordoba, Spain

S. Ventura
University of Cordoba, Spain
Contents

Preface
xxv

Biography
xxix

Part 1
An introduction to e-learning systems, data mining and their interactions
1

Chapter 1
Web-based educational hypermedia
P. De Bra

1. Introduction
2. Adaptive (educational) hypermedia
3. The AHAM reference architecture
4. A general-purpose adaptive web-based platform
 4.1 Overall architecture of AHA!
 4.2 The AHA! authoring tools
5. Questions, quizzes and tasks
6. Adapting to learning styles
7. Conclusions

Chapter 2
Web mining for self-directed e-learning
P. Desikan, C. DeLong, K. Beemanapalli, A. Bose & J. Srivastava

1. Introduction
2. Why self-directed e-learning?
3. Web-based self-directed e-learning applications
 3.1 Google Scholar
 3.2 Westlaw
 3.3 CiteSeer
 3.4 LexisNexis
 3.5 Knowledge management systems
 3.6 Dr. Spock’s child care
Chapter 3
Data mining for the analysis of content interaction in web-based
learning and training systems .. 41
C. Pahl

1. Introduction ... 41
2. Interaction and behavior .. 43
 2.1 Learning and training interaction ... 43
 2.2 Implementing interaction .. 43
 2.3 An abstract model of content interaction 44
 2.4 The interactive database learning environment 44
3. Data and web usage mining ... 45
 3.1 Web usage mining in the educational context 45
 3.2 Data and web mining techniques 46
 3.3 Education-specific web usage mining 47
4. Session statistics ... 48
5. Session classification .. 49
6. Behavioral patterns ... 50
7. Time series ... 52
8. Conclusions ... 53

Chapter 4
On using data mining for browsing log analysis in learning environments 57
F. Wang

1. Introduction ... 57
2 Data mining .. 59
 2.1 Association mining ... 59
 2.2 Clustering .. 59
 2.3 Web usage mining .. 60
 3 Recommendation systems .. 60
 3.1 Content-based filtering systems 60
 3.2 Collaborative filtering systems 61
 3.3 Recommendation systems based on association rules mining technologies .. 61
 4 The research framework .. 62
 5 Construction of browsing content structure 64
 5.1 Data pre-processing ... 64
 5.2 Model definition and construction 65
 5.3 Model application ... 68
 5.4 Summary statements .. 69
 6 Personalized recommendation based on association mining 69
 6.1 Model definition and construction 70
 6.1.1 User browsing similarity in time-framed navigation sessions .. 71
 6.1.2 The HBM clustering algorithm 71
 6.1.3 Mining association rules 71
 6.2 Model application ... 72
 6.2.1 User classification ... 72
 6.2.2 The window-sliding method 72
 6.2.3 The maximal-matching method 73
 6.3 Summary statements .. 73
 7 Concluding remarks .. 73

Part 2
Case studies experiences of applying data mining techniques in e-learning systems .. 77

Chapter 5
Recommender systems for e-learning: towards non-intrusive web mining .. 79

O.R. Zaïane

1 Introduction .. 79
2 Collaborative filtering: how most systems work 81
3 Desired recommender systems in an online learning environment 82
4 Non-intrusive methods for recommendation 83
 4.1 E-learning recommender with association rules 84
 4.2 A model with clustering .. 85
5 Hybrid methods for recommendations 86
 5.1 Architecture of a hybrid recommender system 86
5.2 User and visit session identification ... 87
5.3 Visit mission identification ... 87
5.4 Evaluating hybrid recommenders ... 90
6 Conclusion... 93

Chapter 6
Active, context-dependent, data-centered techniques for e-learning:
a case study of a research paper recommender system 97
T. Tang & G. McCalla
1 Introduction ... 98
2 A research paper recommender system ... 99
3 Two experiments in paper recommendation.. 102
 3.1 What learners want: a survey.. 102
 3.2 Evaluating pedagogy-oriented hybrid collaborative
 filtering .. 104
 3.2.1 Simulation setup .. 104
 3.2.2 Evaluation metrics and control variables 105
 3.2.3 Experimental results and discussion 106
4 The ecological approach ... 107
5 Conclusion... 111

Chapter 7
Applying web usage mining for the analysis of behavior in
web-based learning environments... 117
K. Becker, M. Vanzin, C. Marquardt & D. Ruiz
1 Introduction ... 117
2 The process of WUM .. 119
 2.1 Pre-processing phase .. 119
 2.2 Data mining phase .. 120
 2.3 Pattern analysis phase ... 120
 2.4 Support environments .. 121
3 WUM challenges in practice: a case study .. 121
 3.1 Pre-processing phase .. 122
 3.2 Data mining phase .. 122
 3.3 Pattern analysis phase ... 123
 3.4 Lessons learned... 124
 3.4.1 Pre-processing issues.. 124
 3.4.2 Pattern analysis issues... 124
4 LogPrep: a customizable pre-processing tool.. 125
 4.1 Configuration language and configuration template 126
 4.2 Customization features .. 127
5 OR3: ontology-based rule rummaging and retrieval tool 127
 5.1 Ontology representation ... 128
 5.2 Conceptual pattern representation ... 129
5.3 Pattern rummaging ... 130
5.4 Pattern clustering ... 131
5.5 Pattern filtering ... 131
 5.5.1 Filter definition ... 131
 5.5.2 Equivalence filtering ... 132
 5.5.3 Similarity filtering ... 132
6 Discussions .. 133
7 Conclusions and future work ... 135

Chapter 8
Association analysis for a web-based educational system 139
B. Minaei-Bidgoli, P. Tan, G. Kortemeyer & W. F. Punch
1 Introduction ... 140
2 Background ... 142
 2.1 Association analysis ... 142
 2.2 Data mining for online education systems 143
 2.3 Related work ... 143
3 Contrast rules .. 144
 3.1 Example 1: \(cr_1 \) (difference of confidence) 145
 3.2 Example 2: \(cr_2 \) (difference of proportion) 146
 3.3 Example 3: \(cr_3 \) (correlation and chi-square) 147
 3.4 Contrast rules and interestingness measures 147
4 Algorithm .. 148
5 Experiments ... 149
 5.1 Data model and attributes ... 149
 5.2 Data sets .. 151
 5.3 Results .. 152
 5.3.1 Difference of confidences .. 152
 5.3.2 Difference of proportions ... 153
 5.3.3 Chi-square ... 154
6 Conclusion .. 154

Chapter 9
Data mining in personalizing distance education courses 157
W. Hämäläinen, T.H. Laine & E. Sutinen
1 Introduction ... 157
2 General paradigms for ITSs ... 158
3 Data description .. 160
4 Correlations and Linear Regression Models 162
5 Association rules and probabilistic models 164
6 Evaluating the predictive power by cross-validation 167
7 Conclusions ... 169
Chapter 10
Rule mining with GBGP to improve web-based adaptive educational systems.. 173
C. Romero, S. Ventura, C. Hervás & P. González

1 Introduction .. 173
2 Data mining in e-learning systems .. 174
3 Students’ usage data .. 176
4 Knowledge discovery process .. 178
 4.1 Rule discovery with GBGP ... 179
5 EPRules tool .. 181
6 Experimental results ... 184
 6.1 Description of the discovered information 185
7 Conclusions and future work ... 186

Chapter 11
Identifying gifted students and their learning paths using data mining techniques ... 191
S. Bae, S.H. Ha & S.C. Park

1 Introduction ... 191
2 Data mining in education... 192
 2.1 Gifted education: a short review .. 192
 2.2 Web mining .. 193
3 Identification of gifted students using neural network and data mining .. 193
 3.1 Design of questionnaire .. 194
 3.2 Clustering and classification of gifted students 195
 3.3 Creating a giftedness quotient using neural networks 195
 3.4 Applications .. 196
 3.4.1 General and specific test: identifying of giftedness and their type... 197
 3.4.2 Evaluating the results of the identification test............... 199
4 Web mining for extracting learning path... 199
 4.1 Customized education .. 201
 4.2 Virtual knowledge structure .. 203
 4.3 Application of web mining to a web-based education system... 203
5 Conclusions ... 205

Chapter 12
Data mining to support tutoring in virtual learning communities: experiences and challenges ... 207
E. Gaudioso & L. Talavera

1 Introduction ... 207
2 Data mining ... 208
3 Defining data mining tasks for supporting tutoring 210
 3.1 A working problem ... 212
4 Data pre-processing .. 212
5 Building predictive models ... 215
 5.1 Supporting tutors in course assessment 216
 5.2 Supporting tutors in anticipating student activity levels 219
6 Building descriptive models ... 220
 6.1 Supporting tutors in determining behavioral patterns 220
 6.2 Supporting tutors in course assessment 222
7 Challenges and lessons learned ... 223
 7.1 Definition of data mining tasks .. 223
 7.2 Data preparation .. 223
 7.3 Model building .. 224
8 Concluding remarks ... 225

Chapter 13
Analysis of user navigational behavior for e-learning personalization 227
E. Mor, J. Minguillón & J.M. Carbó

1 Introduction .. 227
2 E-learning environments ... 230
 2.1 The UOC virtual campus ... 231
 2.2 Virtual campus architecture and services 232
3 Navigational behavior analysis .. 233
 3.1 Navigational levels .. 234
4 Experimental results ... 235
 4.1 Server log files ... 236
 4.2 Data pre-processing and feature extraction 238
 4.3 Web mining .. 241
 4.3.1 Variable relevance ... 241
 4.3.2 Unsupervised clustering ... 242
 4.4 Data fusion .. 243
5 Conclusions ... 243

Chapter 14
Automatically constructing an e-textbook via web mining 247
J. Chen & Q. Li

1 Introduction .. 247
2 System architecture ... 248
3 Building concept hierarchies ... 250
4 Topic content identification ... 251
 4.1 Segmenting web pages ... 251
 4.2 Identifying the topic content for topic pages 252
5 Ranking algorithm .. 253
 5.1 Original rank .. 254
5.2 Cue phrases ... 254
5.3 Weighty tags ... 254
5.4 Concept descriptions and definitions .. 255
 5.4.1 Pattern set mining .. 255
 5.4.2 Concept discovery ... 258
5.5 Integrating extracted features ... 259
6 Conclusions ... 259

Chapter 15
Online outlier detection of learners’ irregular learning processes 261
M. Ueno

 1 Introduction .. 261
 2 Learning management system ‘Samurai’ ... 263
 3 Online outlier detection .. 264
 3.1 Data .. 264
 3.2 Model .. 265
 3.3 Model .. 266
 3.4 Outlier detection curves and examples ... 266
 4 Simulation experiments .. 267
 5 System .. 269
 6 Evaluation ... 270
 7 Animated agent to enhance learning ... 272
 8 Conclusions .. 274

Chapter 16
Use of data mining to examine an outreach call center’s effectiveness and build a predictive model for classifying future marketing targets 279
J. Luan, C. Summa & M. Wieland

 1 Background .. 279
 2 Three key questions addressed ... 281
 3 Data sources .. 281
 4 Design and method .. 282
 5 Findings .. 283
 5.1 Yield .. 283
 5.1.1 Step one for answering question one: overall effect of the presence of call center .. 283
 5.1.2 Step two for answering question one: computing specific yield rates .. 284
 5.2 Predictive modeling ... 285
 5.2.1 Data mining rationale and discoveries ... 291
 6 Discussion ... 296

Index 299
Preface

The design and implementation of web-based education systems have grown exponentially in the last years, spurred by the fact that neither students nor teachers are bound to a specific location and that this form of computer-based education is virtually independent of any specific hardware platforms. These systems accumulate a vast amount of information which is very valuable in analyzing students’ behavior and to assist authors in detecting possible errors, shortcomings and improvements. However, due to the vast quantities of data these systems can generate daily, it is very difficult to manage manually, and authors demand tools which assist them in this task, preferably on a continuous basis. A very promising area to attain this objective is the use of data mining.

In the last years, researchers have begun to investigate various data mining methods to help teachers improve e-learning systems. These methods allow them to discover new knowledge based on students’ usage data. The same idea has already been successfully applied in e-commerce systems and is now very popular. Comparatively little work in this direction has yet been released in e-learning systems. However, the number of contributions in this area have grown, both in international conferences (International Conference on Computers in Education, International Conference on Web-based Learning, World Conference on Open Learning and Distance Education, International Conference on Adaptive Hypermedia and Adaptive Web-based Systems, International Conference on User Modeling, International Conference on Intelligent Tutoring Systems, Pacific-Asia Conference on Knowledge Discovery and Data Mining, Genetic and Evolutionary Computation Conference, etc.) and in scientific journals (International Journal on E-Learning, IEEE Education, Computers & Education, Journal of Educational Technology Systems, Journal of Interactive Learning Research, User Modeling and User-Adapted Interaction, etc.). The main purpose of this book is to show the current state of this research area.

This book consists of openly solicited and invited chapters, written by international researchers and leading experts on the application of data mining techniques in e-learning systems. The book consists of 16 chapters organized in two parts. In the first part of the book (Chapters 1–4) we present an introduction to e-learning systems, data mining and the interaction between the two areas. In the
second part of the book (Chapters 5–16) we present several case studies and experiences of applying data mining techniques in e-learning systems. In particular, the chapters cover the following:

Chapter 1 describes recent and ongoing research in web-based education systems, in particular adaptive web-based educational hypermedia.

Chapter 2 describes specific examples of self-directed e-learning and how their functionality and utility can be improved through the use of web mining technology.

Chapter 3 proposes the use of web usage mining for the analysis and evaluation of learner interactions with contents in web-based learning and training systems.

Chapter 4 describes some models and methods of analyzing browsing log data to construct a browsing behavioral model which is helpful in supporting e-learning applications.

Chapter 5 suggests the use of web mining techniques as non-intrusive method to build an agent that could recommend actions, resources or simply links to follow, in an e-learning environment.

Chapter 6 proposes an e-learning system that recommends research papers to students wishing to study an area of research.

Chapter 7 describes a case study and an extensible and customizable preprocessing and pattern analysis tools for supporting the web usage mining process.

Chapter 8 introduces an approach for predicting student performance by the discovery of interesting contrast rules within a web-based educational system.

Chapter 9 introduces general paradigms for tackling intelligent tutoring systems and applies various data mining schemes to describe and predict student performance.

Chapter 10 proposes the use of evolutionary algorithms as an association rule mining method for discovering interesting relationships in student’s usage data.

Chapter 11 proposes a neural network model for identification of gifted students and a web mining framework for distance education to provide their learning path.

Chapter 12 reviews some experiences using data mining to analyze data obtained from e-learning courses based on virtual communities.

Chapter 13 describes a framework for studying the navigational behavior of the users in an e-learning environment integrated in a virtual campus to include the concept of recommended itinerary.

Chapter 14 proposes the construction of an e-textbook automatically using data mining methodologies for a user-specified topic hierarchy and examines how web content mining can be applied to aid e-learning experiences.

Chapter 15 proposes a method of online outlier detection of learners’ irregular learning processes using their response time to e-learning content.
Finally, Chapter 16 proposes the use of data mining in enrollment management. In conclusion, we hope the reader will find this book a truly helpful guide and a valuable source of information about the application of data mining techniques in e-learning systems.

Cristóbal Romero & Sebastián Ventura
Córdoba, July 2005
Biography

Dr. Cristóbal Romero is an Assistant Professor in the Computer Science Department of the University of Córdoba, Spain. He received his Ph.D. in Computer Science from the University of Granada in 2003. His research interests lie in artificial intelligence and data mining in education.

Dr. Sebastián Ventura is an Associate Professor in the Computer Science Department of the University of Córdoba, Spain. He received his Ph.D. in Sciences from the University of Córdoba in 1996. His research interests lie in soft-computing and its applications.