Vorticity and Turbulence Effects in Fluid Structure Interaction

An Application to Hydraulic Structure Design
International Series on Advances in Fluid Mechanics

Objectives

The field of fluid mechanics is rich in exceptional researchers worldwide who have advanced the science and brought a greater technical understanding of the subject to their institutions, colleagues and students.

This book series has been established to bring such advances to the attention of the broad international community. Its aims are achieved by contributions to volumes from leading researchers by invitation only. This is backed by an illustrious Editorial Board who represent much of the active research in fluid mechanics worldwide.

Volumes in the series cover areas of current interest and active research and will include contributions by leaders in the field.

Series Editor

M. Rahman
DalTech, Dalhousie University, Halifax,
Nova Scotia, Canada

Assistant Series Editor

M.G. Satish
DalTech, Dalhousie University, Halifax,
Nova Scotia, Canada
Honorary Editors

C.A. Brebbia
Wessex Institute of Technology
UK

L.G. Jaeger
DalTech, Dalhousie University
Canada

L. Debnath
University of Texas-Pan American
USA

Associate Editors

E. Baddour
National Research Council of Canada
Canada

R. Grimshaw
Loughborough University
UK

S.K. Bhattacharyya
Indian Institute of Technology
Kharagpur, India

R. Grundmann
Technische Universität Dresden,
Germany

A. Chakrabarti
Indian Institute of Science
India

R. C. Gupta
National University of Singapore
Singapore

S. K. Chakrabarti
Offshore Structure Analysis, Inc
USA

D. Hally
Defence Research Establishment
Canada

M. W. Collins
Brunel University West London
UK

M. Y. Hussaini
Florida State University
USA

G. Comini
Università di Udine
Italy

D. B. Ingham
University of Leeds
UK

J. P. du Plessis
University of Stellenbosch
South Africa

S. Kim
University of Wisconsin-Madison
USA

H. J. S. Fernando
Arizona State University
USA

B. N. Mandal
Indian Statistical Institute
India
T. Matsui
Nagoya University
Japan

A.C. Mendes
Universidade de Beira Interior
Portugal

T.B. Moodie
University of Alberta
Canada

M. Ohkusu
Kyushu University
Japan

E. Outa
Waseda University
Japan

W. Perrie
Bedford Institute of Oceanography
Canada

H. Pina
Instituto Superior Tecnico
Portugal

H. Power
University of Nottingham
UK

D. Prandle
Proudman Oceanographic Laboratory
UK

K.R. Rajagopal
Texas A & M University
USA

D.N. Riahi
University of Illinois-Urbana
USA

P. Škerget
University of Maribor
Slovenia

G.E. Swaters
University of Alberta
Canada

P.A. Tyvand
Agricultural University of Norway
Norway

R. Verhoeven
Ghent University
Belgium

M. Zamir
University of Western Ontario
Canada
Vorticity and Turbulence Effects in Fluid Structure Interaction

An Application to Hydraulic Structure Design

Editors

M. Brocchini
University of Genoa, Italy

F. Trivellato
University of Trento, Italy
Vorticity and Turbulence Effects in Fluid Structure Interaction
An Application to Hydraulic Structure Design

Editors:
M. Brocchini
University of Genoa, Italy

F. Trivellato
University of Trento, Italy

Published by
WIT Press
Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK
Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853
E-Mail: witpress@witpress.com
http://www.witpress.com

For USA, Canada and Mexico
WIT Press
25 Bridge Street, Billerica, MA 01821, USA
Tel: 978 667 5841; Fax: 978 667 7582
E-Mail: infousa@witpress.com
http://www.witpress.com

British Library Cataloguing-in-Publication Data
A Catalogue record for this book is available from the British Library

ISSN: 1353-808X

Library of Congress Catalog Card Number: 2005937242

No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

Printed in Great Britain by Cambridge Printing.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.
CONTENTS

Foreword xi

CHAPTER 1

Techniques of research and results in the field of coherent structures of wallbounded turbulence
G. Alfonsi ... 1

CHAPTER 2

Results on large eddy simulations of some environmental flows
V. Armenio, S. Salon .. 29

CHAPTER 3

Nearshore mixing and macrovortices
M. Brocchini, A. Piattella, L. Soldini, A. Mancinelli 57

CHAPTER 4

Large scale circulations in shallow lakes
G. Curto, J. Józsa, E. Napoli, G. Lipari, T. Kramer 83

CHAPTER 5

Multiple states in open channel flow
A. Defina, F.M. Susin .. 105

CHAPTER 6

Flow induced excitation on basic shape structures
S. Franzetti, M. Greco, S. Malavasi, D. Mirauda 131
CHAPTER 7

Air entrainment in vertical dropshafts with an orifice
P. Gualtieri, G. Pulci Doria ... 157

CHAPTER 8

Variational methods in sloshing problems
M. La Rocca, G. Sciortino, P. Mele, M. Morganti 187

CHAPTER 9

Turbulence, friction, and energy dissipation in transient pipe flow
G. Pezzinga, B. Brunone ... 213

CHAPTER 10

Scalar dispersion within canopies: new challenges and frontiers
D. Poggi, A. Porporato, L. Ridolfi, G.G. Katul 237

CHAPTER 11

Flow solvers for liquid–liquid impacts
F. Trivellato, E. Bertolazzi, A. Colagrossi 261
FOREWORD

This book is the collection of 11 chapters that have been contributed by each research unit joining a MIUR (Italian Ministry of University and Research) project, devoted to the topic of fluid structure interaction. The subject matter is divided into chapters covering a wide spectrum of recognized areas of research, such as: wall bounded turbulence; quasi 2-D turbulence; canopy turbulence; large eddy simulation; lake hydrodynamics; hydraulic hysteresis; liquid impacts; flow-induced vibrations; sloshing flows; transient pipe flow; and air entrainment in dropshaft.

The purpose of each chapter is to summarize the main results obtained by the individual research unit. As a result, the main feature of the book is to bring the state of the art on fluid structure interaction to the attention of the broad international community.

Each chapter has been reviewed by leading fluid mechanics scientists. Part of the material completes what already is published in international journals. This has been briefly reviewed in some of the book’s chapters for clarity’s sake and presented along with original results to give an exhaustive picture of each single topic. The basic mathematical formulations, the physical as well as the numerical modeling of interaction problems, are discussed.

This book is mainly aimed at fluid mechanics scientists, but it can be of value also as a reference volume to postgraduate students and practitioners in the field of fluid structure interaction.

The Editors and the Authors are grateful to Professor Carlos Brebbia, Director of the Wessex Institute of Technology, United Kingdom, and to the AFM Series Editor, Professor Matiur Rahman, Dalhousie University, Canada, for the kind invitation to publish the present book in the AFM series of the prestigious WIT Press. The generous support of the many referees who revised the chapters is gratefully acknowledged. Their considerate advices have improved the final quality of the book.

This work has received financial support by the Italian Ministry of University and Research project "Influence of vorticity and turbulence in interactions of water bodies with their boundary elements and effects on hydraulic design".
May the Editors finally add their wish, which after all is shared by any scientist, that the present book might advance this complex branch of Fluid Mechanics because, as Virgilio (Georgische, lib.II, v.490) vividly stated: Felix qui potuit rerum cognoscere causas (He who succeeded in understanding the reasons of phenomena is a happy person).

The Editors
Maurizio Brocchini and Filippo Trivellato
2006