Steps Towards an Evolutionary Physics
The Sustainable World

Aims and Objectives

Sustainability is a key concept of 21st century planning in that it broadly determines the ability of the current generation to use resources and live a lifestyle without compromising the ability of future generations to do the same. Sustainability affects our environment, economics, security, resources, health, economics, transport and information decisions strategy. It also encompasses decision making, from the highest administrative office, to the basic community level. It is planned that this Book Series will cover many of these aspects across a range of topical fields for the greater appreciation and understanding of all those involved in researching or implementing sustainability projects in their field of work.

Topics

Data Analysis
Data Mining Methodologies
Risk Management
Brownfield Development
Landscaping and Visual Impact Studies
Public Health Issues
Environmental and Urban Monitoring
Waste Management
Energy Use and Conservation
Institutional, Legal and Economic Issues
Education
Visual Impact

Simulation Systems
Forecasting
Infrastructure and Maintenance
Mobility and Accessibility
Strategy and Development Studies
Environment Pollution and Control
Land Use
Transport, Traffic and Integration
City, Urban and Industrial Planning
The Community and Urban Living
Public Safety and Security
Global Trends

Main Editor

E. Tiezzi

University of Siena
Italy
Associate Editors

D. Almorza
University of Cadiz
Spain

A. Bejan
Duke University
USA

I. Cruzado
University of Puerto Rico-Mayaguez
Puerto Rico

M. Davis
Temple University
USA

C. Dowlen
South Bank University
UK

J.W. Everett
Rowan University
USA

F. Gomez
Universidad Politecnica de Valencia
Spain

A.H. Hendrickx
Free University of Brussels
Belgium

S.E. Jorgensen
The University of Pharmaceutical Science
Denmark

H. Kawashima
The University of Tokyo
Japan

D. Kirkland
Nicholas Grimshaw & Partners
UK

D. Lewis
Mississippi State University
USA

J.F. Martin-Duque
Universidad Complutense
Spain

R. Olsen
Camp Dresser & McKee Inc.
USA

J. Park
Seoul National University
Korea

M. Andretta
Montecatini
Italy

A. Bogen
Down to Earth
USA

W. Czyczula
Krakow University of Technology
Poland

K. Dorow
Pacific Northwest National Laboratory
USA

D. Emmanoueloudis
Technical Educational Institute of Kavala
Greece

R.J. Fuchs
United Nations
Chile

K.G. Goulias
Pennsylvania State University
USA

I. Hideaki
Nagoya University
Japan

D. Kaliampakos
National Technical University of Athens
Greece

B.A. Kazimee
Washington State University
USA

A. Lebedev
Moscow State University
USA

N. Marchettini
University of Siena
Italy

M.B. Neace
Mercer University
USA

M.S. Palo
The Finnish Forestry Research Institute
Finland

M.F. Platzer
Naval Postgraduate School
USA
V. Popov
Wessex Institute of Technology
UK
H. Sozer
Illinois Institute of Technology
USA
W. Timmermans
Green World Research
The Netherlands
G. Walters
University of Exeter
UK

A.D. Rey
McGill University
Canada
A. Teodosio
Pontificia Univ. Catolica de Minas Gerais
Brazil
R. van Duin
Delft University of Technology
The Netherlands
Steps Towards an Evolutionary Physics

E Tiezzi
University of Siena, Italy
CONTENTS

Preface ... ix
Dedication ... xiii
Acknowledgements ... xv
Prologue ... 1

1. First Step:
ON GIANTS’ SHOULDERS:
A NEW EPISTEMOLOGICAL INSIGHT .. 3
1.1. Ecodynamics .. 3
1.2. The giants and the steps .. 5
1.3. Far-from-equilibrium thermodynamics ... 7
1.4. A metaphysical design ... 11

2. Second Step:
THE PURE DURATION OF TIME ... 15
2.1. The essence of time .. 15
2.2. Prigogine’s time paradox ... 16
2.3. Bergson ... 19
2.4. Einstein’s twins .. 21
2.5. Poincaré .. 23

3. Third Step:
THERMODYNAMIC UNCERTAINTY .. 27
3.1. Heisenberg ... 27
3.2. Spin relaxation .. 28
3.3. The life span of stars ... 31
3.4. Cogito ergo sum (Descartes) ... 32
 4.1. Classical thermodynamics .. 38
 4.2. What is entropy? .. 40
 4.3. Photosynthesis and entropy .. 43
 4.4. The entropy paradox: energy versus entropy 45
 4.5. Self-organizing systems .. 47
 4.6. Entropy and the city ... 50
 4.7. Georgescu-Roegen ... 51

5. Fifth Step: ORDER OUT OF CHAOS .. 53
 5.1. Science of complexity ... 53
 5.2. Thermal convection ... 55
 5.3. Belousov–Zhabotinsky reaction .. 57
 5.4. Mechanism of the Belousov–Zhabotinsky reaction 59
 5.5. Complexity in biology ... 61
 5.6. The supramolecular structure of water 66

6. Sixth Step: SONGS AND SHAPES OF NATURE 69
 6.1. The vocal cords, a wonderful dissipative system 69
 6.2. Looking for the “voice fingerprint” ... 72
 6.3. Vocal fingerprint as biodiversity indicator 72
 6.4. Bats ... 73
 6.5. Biodiversity monitoring: the Monte Arcosu deer 76
 6.6. Applications in medicine: analysis of the crying of newborns ... 77
 6.7. Putting time into attractors: the recurrence plots 79
 6.8. Investigation of biodiversity in gibbon vocalizations 83
 6.9. Recurrence plots in medicine: analysis of newborn cries 86
 Appendix A: Phase space reconstruction 87
 Appendix B: Lyapunov exponents ... 88

7. Seventh Step: URBAN DYNAMICS: SUGGESTIONS FROM EVOLUTIONARY PHYSICS ... 91
 7.1. Dissipative structures and cities .. 91
 7.2. Self-organization and cities .. 97
 7.3. Cities and mobile geographies ... 99
 7.4. Cities and design ... 104
 7.5. The anti-aesthetic assumption .. 107
8. Eighth Step:
ORIENTORS, GOAL FUNCTIONS AND CONFIGURATION PROCESSES ..109
 8.1. Linger fair passing moment ..110
 8.2. From state functions to goal functions (orientors)111
 8.3. Classification of goal functions...112

9. Ninth Step:
SEMANTIC BIOPHYSICAL CHEMISTRY ..121
 9.1. The elm table...122
 9.2. The apricot paradox ..123
 9.3. Epigenetic paradigm versus genetic paradigm...............126
 9.4. Origins of life...127
 9.5. Metabolism is the origin of biodiversities.........................129
 9.6. Entropy, information and the Maxwell’s demon.................129
 9.7. The blue print..130
 9.8. History matters..131

10. Tenth Step:
THE PROBABILITY PARADOX ...133
 10.1. The extinction of dinosaurs...133
 10.2. Probability and prediction of extreme events...............135
 10.3. The chameleon effect..137
 10.4. Ageno: the origins of irreversibility.................................139

11. Eleventh Step:
ALEA IACTA EST ...143
 11.1. Crossing the Rubicon..143
 11.2. Time’s revolution...144
 11.3. The role of aesthetics ..145
 11.4. The laws of ecosystem theory..147
 11.5. Conclusive remarks...150

Names index ..155
PREFACE

by Sven Jørgensen

If we, in a few words, give information about the new world picture that has been presented by modern physics during the 20th century we could apply the following three statements.

(1) Everything is relative (Einstein).
(2) Everything is uncertain (Niels Bohr, Heisenberg and Schrödinger) (alternative formulation “God does play dice”).
(3) Everything is irreversible (Prigogine).

All three statements have contributed to a completely new perception of the universe, its development and its underlying processes.

The third statement has received less attention in society than the two others; but it has actually changed our world picture may be even more than statements number (1) and (2). As pointed out by Ilya Prigogine, although quantum mechanics and general relativity are revolutionary, they are still descendants of classical dynamics and carry radical negation of the irreversibility of time. Time, biological development, the evolution of the universe, and history can only continue in one direction and they do play dice. We understand now that irreversibility is an absolute prerequisite for the development of ecosystems, the history and the entire evolution. The world is so dynamic and so complex that the same conditions will never occur again, but new possibilities can emerge from the present conditions due to the irreversibility principle.

Enzo Tiezzi’s book “Steps Towards an Evolutionary Physics” considers all the three statements in his description of the new world picture, but with a particular focus on irreversibility. The book builds to a great extent on Prigogine’s work; but Enzo Tiezzi “has moved further away from thermodynamic equilibrium” by considering the evolution and the biological core process of “growth”. Moreover, he has taken a holistic view: focused on the entire evolutionary process and not on the single steps. He has attempted to see the forest through the trees.
As did Prigogine, Enzo Tiezzi is using entropy as the core thermodynamic variable. Entropy can be used to describe systems far from thermodynamic equilibrium, provided that it is applied as a non-state function. Free energy and entropy are not state functions when applied on living organisms or ecosystems. At death, the organisms lose momentarily a major part of their free energy (eco-exergy) and produce an enormous amount of entropy (Schrödinger would say that they lose negentropy), because the free energy of the information embodied in the genes are no longer applicable. Death is, however, a very important feature for systems very far from thermodynamic equilibrium, because without death, the important elements will not be recycled and evolution would stop due to lack of carbon, nitrogen, phosphorus, sulphur and so on, the elements that are needed for construction of life. Death is a prerequisite for life!

Evolution has been described many times in the literature by giving details about the present species and their ancestors and their ancestor’s ancestors and so on, represented as fossils. The evolutionary literature also contains a presentation of the development of the genomes, the selection processes and the steadily changing life conditions, including changes in climate. Enzo Tiezzi’s description is in contrast to this reductionistic description of evolution. Superholistic, he describes the mechanism behind evolution – not the steps or single processes – and the natural laws controlling and governing evolution. The mechanism is that an energy flow through a system inevitably will be utilized to bring the system further away from thermodynamic equilibrium – for instance, to bring the system from chaos to order (see the Fifth Step of the book). An inflow of energy to a system is both necessary and sufficient to move the system further away from thermodynamic equilibrium. Without energy input, the system will inevitably go towards thermodynamic equilibrium, which means that the system will have no life, no gradients and be dull and homogenous. If there is energy input, on the other hand, the system has to move further away from thermodynamic equilibrium, when the energy needed for maintenance is covered. Furthermore, every step forward in evolution towards the very complex organization that characterizes the last emerging class of organisms, the mammals, builds on the previously achieved order and organization. Life is only possible if it does not start from zero for every new generation. A mechanism to store the information gained is needed – the genes. The prerequisites for life and the evolution of life are therefore an energy flow (which is fortunately provided by the sun) and a system that makes it possible to store information – the genes. Approximately 4 billion years have been available for the many many steps that encompass the entire evolution. The
sun has provided the energy needed for each step to move further away from thermodynamic equilibrium.

The application of physical chemistry or thermodynamics helps us to understand

(1) the processes and development of ecosystems,
(2) the driving force behind evolution,
(3) the self-organizing ability of living nature,
(4) how the energy inflow and the genes work together to make up evolution and
(5) the very conditions determining the origin of life.

Combined, the study of these is called *ecodynamics* by Enzo Tiezzi – a very pertinent designation for this new emerging science. It builds on a holistic world view, thermodynamics and *all* the three statements presented above applied on living nature. Ecodynamics can (and should be able to) explain the diversity of life – the biodiversity, which is rooted in the enormous variability of life conditions in time and space – and the beauties of nature – the colour and pattern of butterflies, the spectacular colour symphony of a temperate forest at fall, the songs of birds at dawn, and many more examples or, as expressed by Enzo Tiezzi in the Sixth Step, the songs and shapes of nature. The enormous variability and beauty of the life forms are a result of Monod’s combination of necessity and chance: survival is a “must” if the results (information) already achieved should not be lost, but it is also a question of which organisms are fittest under the steadily changing (randomly) conditions.

What is presented here in the preface is in short the challenges and basic ideas of ecodynamics. I am sure that the reader will find ecodynamics as exciting as I do. So, have a good time with this interesting book about a new emerging science.

Copenhagen, 14th November 2005
Sven Erik Jørgensen