Fluid Structure Interaction and Moving Boundary Problems
FLUID MECHANICS

Editorial Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.N. Mandal</td>
<td>Indian Statistical Institute, India</td>
</tr>
<tr>
<td>E. Baddour</td>
<td>National Research Council of Canada, Canada</td>
</tr>
<tr>
<td>S.K. Bhattacharyya</td>
<td>Indian Institute of Technology, Kharagpur, India</td>
</tr>
<tr>
<td>A. Chakrabarti</td>
<td>Indian Institute of Science, India</td>
</tr>
<tr>
<td>S.K. Chakrabarti</td>
<td>Offshore Structure Analysis, Inc, USA</td>
</tr>
<tr>
<td>M.W. Collins</td>
<td>South Bank University, UK</td>
</tr>
<tr>
<td>G. Comini</td>
<td>Universita di Udine, Italy</td>
</tr>
<tr>
<td>L. Debnath</td>
<td>University of Texas-Pan American, USA</td>
</tr>
<tr>
<td>J.P. du Plessis</td>
<td>University of Stellenbosch, South Africa</td>
</tr>
<tr>
<td>H.J.S. Fernando</td>
<td>Arizona State University, USA</td>
</tr>
<tr>
<td>T.B. Gatski</td>
<td>NASA Langley Research Center, USA</td>
</tr>
<tr>
<td>R. Grimshaw</td>
<td>Loughborough University, UK</td>
</tr>
<tr>
<td>R. Grundmann</td>
<td>Technische Universität Dresden, Germany</td>
</tr>
<tr>
<td>R.C. Gupta</td>
<td>National University of Singapore, Singapore</td>
</tr>
<tr>
<td>D. Hally</td>
<td>Defence Research Establishment, Canada</td>
</tr>
<tr>
<td>M.Y. Hussaini</td>
<td>Florida State University, USA</td>
</tr>
<tr>
<td>D.B. Ingham</td>
<td>University of Leeds, UK</td>
</tr>
<tr>
<td>L.G. Jaeger</td>
<td>DalTech, Dalhousie University, CANADA</td>
</tr>
<tr>
<td>S. Kim</td>
<td>University of Wisconsin-Madison, USA</td>
</tr>
<tr>
<td>T. Matsui</td>
<td>Nagoya University, Japan</td>
</tr>
</tbody>
</table>
THIRD INTERNATIONAL CONFERENCE ON
FLUID STRUCTURE INTERACTION AND THE EIGHTH INTERNATIONAL
CONFERENCE ON COMPUTATIONAL MODELLING AND EXPERIMENTAL
MEASUREMENTS OF FREE AND MOVING BOUNDARIES

FLUID STRUCTURE INTERACTION AND
MOVING BOUNDARY PROBLEMS

CONFERENCE CHAIRMEN

S.K. Chakrabarti
Offshore Structure Analysis Inc., USA

S. Hernandez
University of La Coruña, Spain

C.A. Brebbia
Wessex Institute of Technology, UK

INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE

T A Baer P Prochazka
J D Baum M Rahman
J Bruch Jr R Rao
M Casteleiro J M Roesset
A Davies B Sarler
K Fujita M G Satish
J C Heinrich Y-K Suh
J A Jurado N Toy
A Mammoli F Trivellato
G Manzini H van Brummelen
A C Mendes S J Van Vuuren

Organised by
Wessex Institute of Technology, UK
and
University of La Coruña, Spain
Fluid Structure Interaction and Moving Boundary Problems

Edited by

S.K. Chakrabarti
Offshore Structure Analysis Inc., USA

S. Hernandez
University of La Coruña, Spain

C.A. Brebbia
Wessex Institute of Technology, UK
S.K. Chakrabarti
Offshore Structure Analysis Inc., USA

S. Hernandez
University of La Coruña, Spain

C.A. Brebbia
Wessex Institute of Technology, UK

Published by

WIT Press
Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK
Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853
E-Mail: witpress@witpress.com
http://www.witpress.com

For USA, Canada and Mexico
Computational Mechanics Inc
25 Bridge Street, Billerica, MA 01821, USA
Tel: 978 667 5841; Fax: 978 667 7582
E-Mail: infousa@witpress.com
http://www.witpress.com

British Library Cataloguing-in-Publication Data
A Catalogue record for this book is available from the British Library

ISSN: 1746-4498 (print)
ISSN: 1743-3509 (on-line)

The texts of the papers in this volume were set individually by the authors or under their supervision. Only minor corrections to the text may have been carried out by the publisher.

No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

Printed in Great Britain by Cambridge Printing.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.
Preface

This book contains the edited papers presented at the 3rd International Conference on Fluid Structure Interaction and the 8th International Conference on Computational Modelling and Experimental Measurements of Free and Moving Boundary Problems, which took place in La Coruna, Spain. The meetings were organized by the Wessex Institute of Technology, UK and the University of La Coruna in Galicia, Spain.

The book is divided into two parts, the first dealing with Fluid Structure Interaction problems, the other with Moving Boundary studies.

The first includes specialized areas of interaction of fluids with a variety of structures encountered by the flow ranging from wind, current, biofluids and ocean waves to tall buildings, ocean structures, cables, towers, bridges, risers and biological structures. It emphasizes new research in the specialized field of fluid structure interaction. It also presents new applications of these developments to the real world problems. The readers should be particularly interested in the new ideas and latest work on the subject. The contributors include experts from different application fields providing valuable cross breeding of ideas and techniques in their contributions.

The basic mathematical formulations of fluid structure interaction and their numerical (as well as physical) modeling are discussed in this book. The contents cover the following fields:

- Advances in interaction problems in CFD
- Cavitation effects in turbo machines and pumps
- Computational methods
- Fluid and biological tissue interaction
- Fluid pipeline interactions
- Hydrodynamic forces
- Mechanics of cables, risers and moorings
- Offshore structure and ship dynamics
- Response of structures including fluid dynamics
- Wind effects on bridges and towers

The second part deals with problems where the position of the border or interphase boundaries have to be determined as part of the solution. The transient case leads to the so-called moving boundary problem, and the steady case to the free boundary problem. The studies encompass a wide variety of cases, such as
physical and mathematical systems of phase change phenomena between solids, liquids and gases; phase distribution in multiple systems, and wave problems. It also discusses numerical methods for free and moving boundary problems such as finite differences, finite elements, finite volumes and boundary elements. The contents cover the following topics:

- Free surface flow
- Computational fluid mechanics
- Phase change
- Advanced computational simulation

The Editors are grateful to all the authors for their contributions and most specially indebted to the members of the International Scientific Advisory Committee of the conferences and other colleagues for their help in reviewing the material published in this volume.

The Editors
La Coruna, Spain 2005
Contents

Part I: Fluid Structure Interaction

Section 1: Advances in interaction problems in CFD

Development of the coupled MAZ/FLEX code
C. K. B. Lee, V. Pereyra & D. Vaughan .. 5

Coupling of FEFLO with SIMPACT
J. A. Gomez, R. Löhner, J. Rojek & E. Oñate .. 15

Advances in FSI using body-fitted unstructured grids
R. Löhner, B. Hübner & J. R. Cebral .. 25

A CFD based numerical study on aerodynamic characteristics of π cross sections using baffle plates
G. Diogo, A. V. Lopes & L. M. C. Simões.. 35

Section 2: Cavitation effects in turbo machines and pumps

Developments to minimize the occurrence of surface and subsurface vortices at pump intakes
S. J. van Vuuren .. 47

Time-domain analysis of the hydroelastic response of cavitating propulsors
Y. L. Young .. 57

Velocity and static pressure profiles in wide angled two-dimensional stalled diffuser flows
K. Kibicho & A. T. Sayers .. 71

Experimental investigation of the effect of solid-mixture on the cavitation characteristic of a centrifugal pump
A. Ladouani & A. Nemdili .. 81
Experimental study of the influence of geometrical parameters on the cavitation of a small centrifugal pump
A. Nemdili ... 89

An investigation about preventing cavitation damage and fatigue failure in Derbendikhan power station
S. S. Fattah, F. M. Khoshnaw & R. A. Saeed 97

Section 3: Computational methods
Verification and validation in computational solid mechanics and the ASME Standards Committee
L. E. Schwer ... 109

Embankment dam overtopping and collapse: an innovative approach to predict the breach outflow hydrograph
C. Marche ... 119

Gate failure, numerical and physical modelling at Gouin dam
L. Carballada, S. Han, M. Lemay, M. Stirbu, G. Holder & Y. Collin 131

Section 4: Fluid and biological tissue interaction
Simulation of blood flow and vessel deformation in three-dimensional, patient-specific models of the cardiovascular system using a novel method for fluid-solid interactions
A. Figueroa, I. Vignon-Clementel, K. Jansen, T. J. R. Hughes & C. A. Taylor ... 143

Interaction of cryogen spray with human skin under vacuum pressures
W. Franco, J. Liu & G. Aguilar .. 153

Section 5: Fluid pipeline interactions
3D finite element analysis of a hydraulic engine mount including fluid-structure interactions
F. Daneshmand, P. Saketi & A. Khajepour ... 165

Effect of hydrodynamic drag on the stability of a cantilever pipe conveying fluid
G. L. Kuiper & A. V. Metrikine .. 175

Qualitative analysis of dynamic effects in oil pipelines
D. Guaycochea-Guglielmi & G. Soto-Cortés 185
Section 6: Hydrodynamic forces

Bluff-body flow created by combined rotary and translational oscillation
S. Kocabiyik & Q. M. Al-Mdallal ... 195

Interaction between a tethered sphere and a free surface flow
M. Greco, S. Malavasi & D. Mirauda ... 205

Section 7: Mechanics of cables, risers and moorings

Investigation of a catenary riser undergoing VIV
J. M. Niedźwecki & G. Moe ... 217

Vortex-induced vibrations and lock-in phenomenon of bellows structure subjected to fluid flow
M. Watanabe & M. Oyama ... 225

Section 8: Offshore structures and ship dynamics

Time-frequency analysis of spar motions
A. E. Altenberg, J. M. Niedźwecki & J. M. Roësset 237

Dynamic response and fluid structure interaction of submerged floating tunnels
S. Remseth, B. J. Leira, A. Rönnquist & G. Udahl 247

Steady current forces on tanker-based FPSOs
R. S. Mercier & F. A. Huijs ... 259

The dynamics of deepwater offloading buoys
A. Duggal & S. Ryu ... 269

Nonlinear response analysis of a SeaStar offshore Tension Leg Platform in six degrees of freedom
M. J. Ketabdari & H. Alemi Ardakani .. 279

Section 9: Response of structures including fluid dynamics

Current flow past large concrete piers:
CFD analysis vs. physical model tests
S. K. Chakrabarti ... 291

An independent geometry modelling method in wave-body interactions
S. H. Mousavizadegan & M. Rahman .. 301
Estimating time-averaged turbulent fluid forces from an ensemble-averaged flow field for engineering applications
T. H. Yip, Q. D. Zhang, E. H. Ong & C. K. Tan ... 311

A new very fast simulation method for fluid structure interaction of an air bearing crossing steps in the ground
M. Bäuml & J. Heinzl .. 319

Undersea fluid/structure coupling methodology
A. Wardlaw, T. McGrath & J. A. Luton .. 329

On monolithic approaches to fluid-structure interactions
S. Étienne, D. Pelletier, D. Tremblay & A. Garon .. 339

Floating Common Foundations for Multiple Building Structures (FCF-MBS)
N. E. Myridis & E. N. Myridis .. 351

Section 10: Structure response to severe shock and blast loading

On the coupling of CFD and CSD methodologies for modeling blast-structure interactions
J. D. Baum, E. L. Mestreau, H. Luo, R. Löhner, D. Pelessone,
M. E. Giltrud & J. K. Gran .. 361

Experimental analysis and numerical simulation of a fuel tank filler in a crash environment
G. Janszen & A. Pernechele .. 373

A CSD finite element scheme for coupled blast simulations
O. Soto, J. Baum, R. Löhner, E. Mestreau & H. Luo .. 383

Modeling enhanced blast explosives using a multiphase mixture approach
M. R. Baer, R. G. Schmitt, E. S. Hertel & P. E. DesJardin .. 393

Analysis of blast loaded structures by numerical simulation
A. Klomfass, G. Heilig & K. Thoma ... 403

A study of a moderately reinforced concrete wall subject to high rate loadings due to impacting bodies
P. P. Papados, R. L. Hall & D. Pelessone .. 413

Diagnostics for multiple-phase blast flows
R. G. Ames, M. J. Murphy, S. E. Groves & D. Cunard ... 423
Section 11: Wind effects on bridges and towers

A comparison of flutter speed of the Messina Bridge considering several cable configurations
S. Hernández, J. A. Jurado, F. Bravo & A. Baldomir .. 437

Control of wind-induced nonlinear oscillations in suspension bridges
M. Abdel-Rohman .. 447

Controlling beat phenomena in coupled systems using asymmetric tuned liquid column dampers
M. J. Smith, J. J. Kobine & F. A. Davidson .. 457

Distributed computing for the evaluation of the aeroelastic response and sensitivity analysis of flutter speed of the Messina Bridge
F. Nieto, S. Hernández & J. A. Jurado ... 465

A wavelet-based method to simulate gust response of structures
T. Kitagawa .. 477

Part II: Moving Boundaries

Section 1: Free surface flow

Numerical simulation of free surface flows by Lagrangian particle methods
L. Cueto-Felgueroso, I. Colominas, F. Navarrina & M. Casteleiro 491

The Euler-type description of Lagrangian water waves
E. V. Buldakov, P. H. Taylor & R. Eatock Taylor ... 501

An implicit finite volume method for unsteady free surface flows
T. Chang ... 511

A finite volume model for the resolution of the shallow water equations with moving boundary conditions
J. Fe, F. Navarrina & J. Puertas .. 521

Numerical calculations of viscous effects on water waves
G. Baker & J. Wang .. 531

Spectral characterization of wave patterns in stratified concurrent air–water channel flow using LDV
M. Fernandino & T. Ytrehus .. 541
Approaches to solving a free boundary porous medium flow problem
J. Zhang, B. Jiang & J. C. Bruch, Jr. ... 551

Section 2: Computational fluid mechanics

A generalized method for advective-diffusive computations in engineering
H. Gómez, I. Colominas, F. Navarrina & M. Casteleiro 563

A Cartesian method for mixing tank simulation
J. N. Thornock & P. J. Smith .. 573

Analysis of hydrodynamic and transport phenomena in the ‘Ría de Arousa’:
a numerical model for high environmental impact estuaries
F. Navarrina, I. Colominas, M. Casteleiro, L. Cueto-Felgueroso,
H. Gómez, J. Fe & A. Soage ... 583

RANS turbulence models for pitching airfoil
K. A. Ahmad, W. McEwan, J. K. Watterson & J. Cole 595

Section 3: Phase change

Solution of the transient direct chill casting problem with simultaneous
material and interphase moving boundaries by the local radial basis function
collocation technique
B. Šarler & R. Vertnik ... 607

A numerical model of the crystallization of pure aluminium
F. Kavicka, J. Stetina, K. Stransky, B. Sekanina, J. Dobrovská
& J. Heger .. 619

A new alternative numerical approach applied to
free-moving boundary problems
S. G. Ahmed & S. A. Mishref ... 631

Section 4: Advanced computational simulation

Optimal thickness design of laminated cylinders with
linearly distributed prestress
P. Procházka .. 643

Moving boundary problem solved by the Adomian decomposition method
R. Grzymkowski & D. Slota ... 653
Wetting in pressure driven slot flow
A. Sun, T. Baer, S. Reddy, L. Mondy, R. Schunk, P. Sackinger,
R. Rao, D. Noble, J. Bielenberg & A. Graham .. 661

Simulation of a weld pool interface motion by
a variational inequality approach
D. D. Doan, F. Gabriel, Y. Jarny & P. Le Masson .. 671

Numerical study of the residual stress field during arc welding
with a trailing heat sink
F. A. Soul & Z. Yanhua .. 683

Author Index .. 693