INTELLIGENT ROAD DESIGN
Objectives

The objective of this Series is to provide state-of-the-art information on all aspects of transport research and applications. This covers land, water and air systems with emphasis on multi-mode operation. The books in the Series deal with planning operation and management as well as engineering aspects of transport. Environmental topics and sustainability are an important part of the Series. City, national and international transport are covered and encompassing interdisciplinary aspects.

<table>
<thead>
<tr>
<th>Transport strategies</th>
<th>Railway systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and funding</td>
<td>Water and sea transport</td>
</tr>
<tr>
<td>Transport and economic issues</td>
<td>Road transport</td>
</tr>
<tr>
<td>Operations and management</td>
<td>Urban transport systems</td>
</tr>
<tr>
<td>Private and public initiatives and policies</td>
<td>Terminal and interchanges</td>
</tr>
<tr>
<td>Regulation and standardisation</td>
<td>People movers</td>
</tr>
<tr>
<td>Transport and land use planning</td>
<td>Multi-mode systems</td>
</tr>
<tr>
<td>Sustainable transport</td>
<td>Traffic integration</td>
</tr>
<tr>
<td>Environmental issues</td>
<td>Infrastructure</td>
</tr>
<tr>
<td>Information technology and electronic aspects</td>
<td>Scheduling and traffic control</td>
</tr>
<tr>
<td>Multi-media and advanced training techniques</td>
<td>Vehicle technology</td>
</tr>
<tr>
<td>Management information systems</td>
<td>Safety and accident prevention</td>
</tr>
<tr>
<td>Human interface and decision support</td>
<td>Hazardous transport risk</td>
</tr>
<tr>
<td>Traveller psychology and behaviour</td>
<td>Hazardous remediation</td>
</tr>
<tr>
<td>Emerging technologies</td>
<td>Transport in extreme conditions</td>
</tr>
<tr>
<td>Transport and energy</td>
<td>Freight transport</td>
</tr>
<tr>
<td>Air transportation</td>
<td></td>
</tr>
</tbody>
</table>
Associate Editors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Angelino</td>
<td>A.R.P.A. Lombardia</td>
<td>Italy</td>
</tr>
<tr>
<td>G. Mattrisch</td>
<td>DaimlerChrysler AG</td>
<td>Germany</td>
</tr>
<tr>
<td>R.D. Bornstein</td>
<td>San Jose State University</td>
<td>USA</td>
</tr>
<tr>
<td>F. Robuste</td>
<td>Universitat Politecnica de Catalunya</td>
<td>Spain</td>
</tr>
<tr>
<td>S. Clement</td>
<td>Transport System Centre</td>
<td>Australia</td>
</tr>
<tr>
<td>G. Sciutto</td>
<td>Universita degli Studi di Genova</td>
<td>Italy</td>
</tr>
<tr>
<td>F. Filippi</td>
<td>La Sapienza</td>
<td>Italy</td>
</tr>
<tr>
<td>Q. Shen</td>
<td>Massachusetts Institute of Technology</td>
<td>USA</td>
</tr>
<tr>
<td>Y. Hayashi</td>
<td>Nagoya University</td>
<td>Japan</td>
</tr>
<tr>
<td>E. Taniguchi</td>
<td>Kyoto University</td>
<td>Japan</td>
</tr>
<tr>
<td>L. Int Panis</td>
<td>VITO Expertisecentrum IMS</td>
<td>Belgium</td>
</tr>
<tr>
<td>M.A.P. Taylor</td>
<td>University of South Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>C. Jefferson</td>
<td>University of the West of England,</td>
<td>UK</td>
</tr>
<tr>
<td>R. van der Heijden</td>
<td>University of Nijmegen</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>J.W.S. Longhurst</td>
<td>University of the West of England,</td>
<td>UK</td>
</tr>
<tr>
<td>R. van Duin</td>
<td>Transport Policy & Logistics Org.</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>L. Lundqvist</td>
<td>Royal Institute of Technology</td>
<td>Sweden</td>
</tr>
<tr>
<td>A. Yeh</td>
<td>The University of Hong Kong</td>
<td>China</td>
</tr>
</tbody>
</table>
INTELLIGENT ROAD DESIGN

M.K. Jha
Morgan State University, USA

P. Schonfeld
University of Maryland, USA

J.-C. Jong
Sinotech Engineering Consultants Inc., Taiwan (R.O.C.)

E. Kim
University of Incheon, South Korea
INTELLIGENT ROAD DESIGN

Series: Advances in Transport, Vol. 19

M.K. Jha
P. Schonfeld
J.-C. Jong
E. Kim

Published by

WIT Press
Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK
Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853
E-Mail: witpress@witpress.com
http://www.witpress.com

For USA, Canada and Mexico

WIT Press
25 Bridge Street, Billerica, MA 01821, USA
Tel: 978 667 5841; Fax: 978 667 7582
E-Mail: infousa@witpress.com
http://www.witpress.com

British Library Cataloguing-in-Publication Data

A Catalogue record for this book is available from the British Library

ISSN: 1462-608X

Library of Congress Catalog Card Number: 2005928126

No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

Printed in Great Britain by ***************

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.
Contents

Biographies .. xv

Foreword ... xvii

PART A: Theoretical foundations and techniques for intelligent road design

Chapter 1 Introduction .. 3
 1.1 Background and motivation ... 3
 1.2 The highway planning process ... 4
 1.3 Intelligent road design ... 5
 1.4 Highway design models ... 6
 1.4.1 The cost models ... 6
 1.4.2 The optimization models ... 8

Chapter 2 Traditional methods for alignment optimization 9
 2.1 Costs associated with highway transportation 9
 2.1.1 Planning, design, and administrative costs 9
 2.1.2 Construction costs .. 10
 2.1.3 Maintenance costs .. 11
 2.1.4 User costs ... 11
 2.1.5 Social and environmental costs .. 12
 2.2 Relations between highway costs and alignment configurations .. 13
 2.3 Constraints and operational requirements in highway alignments ... 15
 2.3.1 Traffic considerations ... 15
 2.3.2 Horizontal alignment ... 15
 2.3.3 Vertical alignment ... 16
 2.4 Models for optimizing horizontal alignment 17
 2.4.1 Calculus of variations ... 17
 2.4.2 Network optimization ... 19
 2.4.3 Dynamic programming .. 21
 2.5 Models for optimizing vertical alignment 22
 2.5.1 Enumeration .. 22
5.6 Convergence... 108
5.7 Other issues.. 108

Chapter 6 Model and solution algorithms for optimizing backtracking horizontal alignments ..111
6.1 Representation of alignment... 112
6.2 Cost function ... 114
 6.2.1 Location-dependent cost... 114
 6.2.2 Length-dependent cost ... 114
 6.2.3 User costs ... 114
6.3 Final model and its properties ... 114
6.4 Genetic encoding and initial population..................................... 115
6.5 Genetic operators ... 117
 6.5.1 Uniform mutation... 117
 6.5.2 Straight mutation... 118
 6.5.3 Non-uniform mutation... 119
 6.5.4 Whole non-uniform mutation ... 119
 6.5.5 Simple crossover .. 119
 6.5.6 Two-point crossover.. 120
 6.5.7 Arithmetic crossover .. 120
 6.5.8 Heuristic crossover.. 120
6.6 An example ... 120

Chapter 7 Model and solution algorithms for optimizing non-backtracking 3-dimensional alignments................................. 125
7.1 Representation of alignment... 125
7.2 Cost function ... 134
 7.2.1 Earthwork cost.. 134
 7.2.2 User costs ... 145
7.3 Final model and its properties ... 146
7.4 Genetic encoding and initial population..................................... 149
7.5 Genetic operators ... 151
 7.5.1 Uniform mutation... 151
 7.5.2 Straight mutation... 154
 7.5.3 Non-uniform mutation... 155
 7.5.4 Whole non-uniform mutation ... 155
 7.5.5 Simple crossover .. 155
 7.5.6 Two-point crossover.. 155
 7.5.7 Arithmetic crossover .. 156
 7.5.8 Heuristic crossover.. 156

Chapter 8 Model and solution algorithms for optimizing backtracking 3-dimensional alignments................................. 157
8.1 Representation of alignment... 157
8.2 Cost function ... 158
8.2.1 Location-dependent cost ... 158
8.2.2 Length-dependent cost ... 158
8.2.3 Earthwork cost ... 159
8.2.4 User costs ... 159
8.3 Final model and its properties ... 159
8.4 Genetic encoding and initial population 160
8.5 Genetic operators .. 163
8.5.1 Uniform mutation ... 163
8.5.2 Straight mutation .. 165
8.5.3 Non-uniform mutation ... 166
8.5.4 Whole non-uniform mutation ... 167
8.5.5 Simple crossover ... 167
8.5.6 Two-point crossover ... 167
8.5.7 Arithmetic crossover ... 167
8.5.8 Heuristic crossover ... 167

Chapter 9 Case study and sensitivity analysis 169
9.1 Case study 1 ... 169
9.1.1 Problem description ... 169
9.1.2 Solution and goodness test ... 171
9.1.3 Sensitivity analysis of genetic operators 176
9.2 Case study 2 ... 187
9.2.1 Problem description ... 187
9.2.2 Comparisons of solutions found by Models 3 and 4 189
9.3 Case study 3 ... 193
9.3.1 Problem description ... 193
9.3.2 Comparisons of solutions found by Models 3 and 4 195
9.3.3 Goodness test for the best solution found by Model 4 199

Chapter 10 Alignment optimization with GIS 201
10.1 An overview of MDProperty View 201
10.2 Other GIS database and maps .. 203
10.3 Environmental issues .. 203
10.4 Developing solution algorithms with GIS 204
10.4.1 Obtaining input data and maps ... 205
10.4.2 Preprocessing input data and maps 209
10.4.3 Developing algorithms based on spatial relations 213
10.4.4 Integrating GIS with genetic algorithms 215
10.4.5 Compactness analysis ... 215
10.5 Case studies with real maps using GIS 221
10.5.1 Baltimore county example .. 221
10.5.2 Talbot county example ... 221
10.5.3 Cecil county example .. 228
10.5.4 Brookeville bypass project example 231
10.5.5 Effects of map size ... 246
10.5.6 Significantly different alignments 249
PART C: Intelligent intersection and road structure design

Chapter 11 Modeling intersections and road structures 257
11.1 Road structures in highway engineering .. 258
11.2 Importance of incorporating road structures into highway alignment optimization ... 260
11.3 Characteristics of road structures on highways 263
11.3.1 At-grade intersection characteristics 263
11.3.2 Small bridge characteristics ... 264
11.3.3 Characteristics of grade separated structures (overpass and underpass) ... 265
11.3.4 Small tunnel characteristics ... 265
11.3.5 Characteristics of interchanges ... 267

Chapter 12 Cost functions of intersections and road structures for highway alignment optimization ... 269
12.1 Estimating highway earthwork cross sectional areas 269
12.1.1 Current methods for estimating cross sectional areas 270
12.1.2 Methodology for estimating cross section areas 272
12.1.3 Developing new methods for finding ground elevations ... 275
12.1.4 Example study ... 278
12.2 Modeling intersection cost functions sensitive to alignments 282
12.2.1 Methodology for intersection construction cost modeling 282
12.2.2 Pavement cost estimation .. 286
12.2.3 Earthwork boundaries and cost estimation 287
12.2.4 Right-of-way boundaries and cost estimation 293
12.2.5 An example study for right-of-way cost estimation 294
12.2.6 Intersection accident costs ... 296
12.2.7 Intersection delay costs ... 300
12.2.8 Intersection vehicle fuel costs .. 302
12.3 Development of bridge cost functions 304
12.4 Cost functions for grade separated structures (underpass and overpass) ... 308
12.5 Interchange cost functions ... 310
12.6 Cost functions for short tunnels ... 312

Chapter 13 Incorporating the developed cost functions for intersections and road structures into genetic algorithms ... 315
13.1 Algorithm for obtaining ground elevations using planar interpolation ... 315
13.2 Algorithm for combining functions of bridges and tunnels 317
13.3 Algorithms for incorporating intersections, grade separations and interchanges ... 318
13.3.1 Data format for saving the coordinates of the existing roads ... 319
13.3.2 Methods for selecting the crossing type among intersections, grade separations and interchanges 319
13.3.3 Methods for determining a signal type for interchanges and an optimal cycle for signalized intersections 320

Chapter 14 Local optimization of intersections for highway alignment optimization .. 325
14.1 Motivation for local intersection optimization 325
14.2 Methods for local intersection optimization 327
14.3 Formulation of the objective function for local intersection optimization ... 331
14.4 Example study .. 332
14.4.1 Example study based on an artificial area 332
14.4.2 Example study based on a real GIS map 333

Chapter 15 Case studies with intersections and road structures.......... 337
15.1 Application of planar interpolation for estimating earthwork costs ... 338
15.2 Results incorporating bridges and tunnels into alignment optimization ... 341
15.3 Case studies with intersections and other structures 355
15.4 Two-stage alignment optimization .. 372
15.5 Sensitivity analysis of critical parameters 379

Chapter 16 Future work ... 387
16.1 Other artificial intelligence techniques for optimal search........ 387
16.2 Optimization of networks .. 387
16.3 GIS issues .. 389
16.4 Formulation of other costs ... 389
16.5 Hierarchical representation of cost components in optimization 389
16.6 Digital terrain modeling ... 390
16.7 Conceptual improvements .. 390

Appendix A An overview of genetic algorithms .. 391
A.1 What are genetic algorithms? .. 391
A.2 How do genetic algorithms work? 392
A.2.1 Genetic encoding .. 394
A.2.2 Fitness function ... 394
A.2.3 Selection ... 394
A.2.4 Genetic operators .. 395
A.2.5 Replacement ... 397
A.2.6 Convergence ... 397
A.3 Why do genetic algorithms work? 398
A.4 Comparisons with other optimization techniques 398
Appendix B Overview of geographic information system applications in transportation... 401

Bibliography... 405

Index ... 417
Biography of Dr. Jyh-Cherng Jong

Dr. Jyh-Cherng Jong is Senior Research Scientist of Civil, Hydraulic, and Informatics Research Center at Sinotech Engineering Consultants, Inc. He received B.B.A. in Transportation Engineering and Management, and M.S. in the Institute of Traffic and Transportation from National Chiao Tung University, Taiwan. He was granted the fellowship of International Road Federation in 1995 and earned his Ph.D. in Civil Engineering from the University of Maryland, College Park in 1998. Due to his outstanding academic achievements, Dr. Jong was selected as a member of the Phi Tau Phi Scholastic Honor Society and the Honor Society of Phi Kappa Phi. His primary research interests are in the applications of optimization theory, simulation modeling, artificial intelligence, and Information Technology to highway design and railway operation. Dr. Jong is currently the team leader of transportation research group at Sinotech Engineering Consultants, Inc. He has directed several research projects funded by Institute of Transportation and Railway Reconstruction Bureau in Ministry of Transportation and Communications, Taiwan. Dr. Jong is a member of China Road Federation, Chinese Institute of Transportation, Chinese Institute of Engineers, and Rail Engineering Society of Taiwan, where he is also a member of the academic subcommittee.

Biography of Dr. Manoj K. Jha

Dr. Manoj K. Jha is Assistant Professor of Civil Engineering at the Morgan State University, USA. He has taught over eight courses in transportation engineering at the Morgan State University and the University of Maryland, College Park. He performs research in transportation system optimization, highway design and maintenance, artificial intelligence, and geographic information systems. He is a member of several professional organizations and technical committees and has given a number of invited seminars. He has published over forty peer-reviewed papers and is very active in transportation research. Currently, he directs a number of doctoral dissertations at the Morgan State University. Dr. Jha received B.E. in Mechanical Engineering from the National Institute of Technology, Durgapur, India in 1991, M.S. in Mechanical Engineering from the Old Dominion University in 1993, and Ph.D. in Civil Engineering from the University of Maryland, College Park in 2000. For additional information please visit Dr. Jha’s website at: www.eng.morgan.edu/~mkjha/
Biography of Dr. Paul Schonfeld

Dr. Paul Schonfeld is a Professor in the Department of Civil and Environmental Engineering at the University of Maryland, College Park, where he has worked since 1978. With his students he has developed methods for analyzing and optimizing various transportation systems, including highways, public transit systems, inland waterways and air transportation systems. He has advised over thirty Ph.D. students, including the coauthors of this book. He has B.S and M.S. degrees from M.I.T. and a Ph.D. from the University of California at Berkeley.

Biography of Dr. Eungcheol Kim

Dr. Eungcheol Kim is Assistant Professor in the Department of Civil and Environmental System Engineering in the College of Engineering at the University of Incheon, in South Korea, where he teaches courses on highway engineering, traffic engineering, highway planning & alignment design, transportation survey and design, calculus and transportation & logistics. He received a B.A. in Dept. of Urban Planning from the Hanyang University in South Korea and a M.A. in Dept. of Environment Planning, Transportation Major from the Seoul National University in South Korea and Ph.D. in Transportation Engineering, Dept. of Civil and Environmental Engineering from the University of Maryland at College Park. His research interests include highway alignment and design optimization, highway engineering, optimization of transportation systems, capacity analysis and public transit systems operations.

He was the Winner of the Student Paper Competition at the ITE Student Chapter in University of Maryland at College Park in 2000. He has also received two awards for outstanding research from the Mayor of Seoul Metropolitan City in 1996 and from the Chairman of Korean Council of Economic and Social Research Institutes in 2005. He served as an editorial member of the Journal of Korean Society of Transportation from 2002 to 2003. He also serves as a member of Urban Planning Board in such city governments as Incheon, Bucheon and Young-In in South Korea.
Foreword

This book addresses the intelligent concepts of road design not found in other textbooks. Road design is an ancient endeavor, however, the advent of motorized vehicles in the early 1900s required paved roads. Road planners and designers in the 1950s foresaw a tremendous growth in coming decades and therefore developed road planning and design concepts to accommodate vehicles of different dimensions to improve driver and passenger safety, comfort and convenience. In the last two decades most urban roads have experienced tremendous growth in traffic leading to frequent congestion and delays.

Due to shrinking right-of-way and limited highway budgets in recent years roadway planners and designers have been constantly exploring innovative methods of road design. Moreover, in recent years highway agencies have often found it difficult to secure adequate funds for road construction due to conflicting public opinions and political views. Therefore, having an intelligent road design model that can quickly optimize horizontal and vertical alignments will allow rapid evaluations of many competing alignment alternatives which should result in faster political and public approval. This book extensively discusses how such a road alignment optimization model can be developed and applied in real case studies.

The book is based on over eight years of research by the authors in intelligent road design and alignment optimization. It should be considered an advanced textbook in road design and will be appropriate for road planners, designers, senior undergraduate students and graduate students. The authors have extensively published the research results from their intelligent road design and alignment optimization work in leading transportation journals. The readers are strongly encouraged to consult those publications and also keep an eye on the forthcoming publications of the authors to stay up-to-date with the future developments in intelligent road design. The authors wish to acknowledge Dr. David Lovell and Min-Wook Kang for some of the material that they contributed to the book.

For easy reading the book has been conveniently divided into three parts. In Part A we develop theoretical foundations and techniques for intelligent road design. In Part B we develop models and algorithms for optimizing road
alignments. In part C we discuss intersection design along with bridges and tunnels. It is hoped that the book will lay the foundations for intelligent road design and will be widely used by researchers and practitioners throughout the world.

The authors
2006
Dedicated to my maternal grandparents, Taranand Jha and Yogmaya Devi, my parents Devendra Jha and Kusum Devi, and my wife Amarjit Kaur.

M.K. Jha

Dedicated to my parents, Marcel and Elise, and to my wife Claudia.

P. Schonfeld

Dedicated to my parents, Kuo-Shang and Pao-Chen, my wife Wen-Yuh, and my two sons, Hou-Ting and Hou-Zhe.

J. -C. Jong

Dedicated to my parents, Taekyung Kim and Okhee Kang, my wife Jongheui Jung, my daughter Chaelin, and my son Seongchan.

E. Kim