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Abstract 

This paper presents a hybrid model that calculates the heads, the discharges in 
pipes, the head losses in pipes (caused by discharges and valves) and the booster 
heads in hydraulic networks. The steady state is calculated considering the 
hydraulic network without valves and boosters. The extended period simulation is 
calculated considering the presence of valves and/or boosters to solve over 
pressure and/or under pressure problems respectively. The hybrid model uses a 
genetic algorithm to minimize the dissipated hydraulic power sum in the whole 
hydraulic network for all calculation time steps of the extended period simulation 
(objective function) by setting optimal valve openings. It was studied how it 
affects the behavior of a hydraulic network. A real hydraulic network that had over 
pressure and under pressure problems was analyzed. It was necessary to install 
boosters and valves to solve the pressure problems. The results show that when 
valves were installed without planning its openings, the total head losses increased 
from 5.9% to 13.6%, while the total head losses in the same hydraulic network 
increased 2.7% when planning the installed valves openings. It’s concluded that 
the dissipated power minimization was an effective way to optimize the studied 
hydraulic network operations by minimizing the head losses increases caused by 
the installed valves. 
Keywords: hydraulic networks, valve openings settings, dissipated power, 
optimization. 
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1 Introduction 

In the field of water resources, the imbalance between supply and demand requires 
solutions more and more efficient. As countries develop, problems related to 
water, like cities supply, water transference among watersheds and mainly the lack 
and the difficulty to obtain financing founds to build new hydraulic works, demand 
the existing systems to be more and more efficient (Diniz et al. [1]). 
     The operational control of hydraulic networks to attend the demands of the 
population throughout the day is a problem that has been researched for many 
years and until nowadays the solutions are not always optimized, resulting in risks 
of failure in water supply (Diniz et al. [1]). 
     Over time, several techniques have been developed to choose the optimum 
alternative and the most well-known are: the linear programming, the non-linear 
programming, dynamic programming, the simulation and the use of evolutionary 
algorithms, like the genetic algorithm. The first three don’t have many applications 
in real cases of engineering, but are sufficient to ensure viability. The simulation 
is the most used technique in practice and provides means for the detailed 
treatment of the systems behavior, although it’s not optimizing. Genetic 
algorithms adapt concepts of genetics and evolution to generate a process 
of optimization in hydraulic networks operations and other fields of study 
(Diniz et al. [1]). 
     Several authors have been applying a lot of optimization techniques in the 
development of global design algorithms. In general, the objective of most 
optimization techniques is always the minimization of costs and until nowadays, 
this tendency remains. Despite the large number of algorithms that have been 
developed, none of them has been fully accepted or has been widely applied in the 
accomplishment of hydraulic network designs and operations. This is due, in 
part, to the great complexity of the techniques required to optimize the solutions 
(Diniz et al. [1]). 
     In this work, instead of using an objective function to minimize any given cost, 
it was decided to use a genetic algorithm to minimize the dissipated hydraulic 
power sum in the whole hydraulic network for all calculation time steps of the 
extended period simulation (objective function) by setting optimal valve openings 
and study how it affects the behavior of a real hydraulic network. 

2 Literature review 

Bureerat and Sriworamas [2] proposed a numerical technique called a network 
repairing technique (NRT). It is proposed to overcome difficulties in operating 
multiobjective evolutionary algorithms (MOEAs) for network topological design. 
It was also developed two new MOEAs to tackle the design problems: 
multiobjective real code population-based incremental learning (RPBIL) and a 
hybrid algorithm of RPBIL with differential evolution (RPBIL–DE). It was 
concluded that NRT is an efficient numerical scheme for dealing with an 
illegitimate pipe network topology in the conceptual design of water distribution 
networks (WDNs). From the numerical experiment, it was also concluded that 
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NRT can be applied for simultaneous topology and sizing optimization of water 
distribution networks efficiently and effectively. With the use of NRT, any 
multiobjective evolutionary algorithm can be employed to solve pipe network 
topological optimization. For the proposed hybrid RPBIL–DE for solving 
simultaneous topology and sizing optimization of pipe networks, it is shown that 
the algorithm is among the top performer MOEAs according to the hypervolume 
indicator. The method gives the best convergence rate for the cases of design 
problems with lower number of design variables. With the use of the proposed 
optimization strategy, a set of Pareto optimal solutions can be obtained and a 
designer can apply decision making techniques to select an appropriate network 
solution. The selected network can then be refined in the detailed design stage. In 
fact, NRT is also challenging if one can perform the conceptual, preliminary and 
detailed design (such as valve locations and distribution) at the same time, which 
means one can have a ready to work network within one optimization run. 
     Creaco and Pezzinga [3] presented a hybrid multiobjective algorithm for the 
combined optimization of pipes and control valves for leakage reduction in water 
distribution networks. The algorithm was initially applied to the optimal valve 
location problem, where it explores the trade-off between the number of installed 
control valves and the daily leakage volume. The applications proved the new 
algorithm is more effective than the multiobjective genetic algorithm widely 
adopted in the scientific literature. The main advantage of the new algorithm lies 
in the fact that it considers the presence of isolation valves in the network, which 
can be closed in order to contribute to leakage attenuation and to eliminate water 
paths around the control valves, thus facilitating control-valve regulation. 
Secondly, the algorithm performed simultaneously pipe replacements and control 
valve installations. In this case, a Pareto front of trade-off solutions between 
installation costs and daily leakage volume was obtained. For the choice of the 
final solution within the front, an economic criterion based on the long-term 
economic analysis was also presented. 
     Giustolisi et al. [4] investigated pumping optimization background leaks, that 
is, the nonrevenue water cost beside the energy cost. It was shown that the classical 
practice of filling the tanks during the night because of a lower level of demand 
and electricity tariff increases costs because of water loss from leaks. It’s 
concluded that accounting for water losses beside energy cost results in the cost of 
nonrevenue water increased by night pumping, which might prevail over the 
general reduction of energy cost because of the hydraulic advantage of using the 
filled tank along the peak demand hours. It’s also concluded that it would be better 
pump water along the day to fill tanks instead of pumping along the night and 
reduce the number of working pumps could be a better practice to control leaks 
beyond energy cost optimization. 
     Xiao et al. [5] developed a segment and outage segment generation technology 
to divide the entire system into multiple segments, which contains a portion of 
pipes and nodes. From the general statistics information of the segment, it was 
possible to find the optimal strategy of valve shutdown and assessing the reliability 
(defined as the ability of the network to provide adequate demands to consumers 
within specified limits of pressure) of a Chinese city hydraulic network. It’s 
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concluded that the analyzed hydraulic network had a low reliability and an 
optimization suggestion was proposed. 
     Haghighi and Asl [6] developed a package utilizing the fuzzy set theory, the 
method of Non Dominated Sorting Genetic Algorithm (NSGA-II) and the 
hydraulic simulation model of EPANET to take into account the uncertainty of 
pipe friction coefficients and nodal demands in the hydraulic analysis of water 
supply networks. In the proposed scheme, the notion of dominance in viewpoints 
of density and diversity of Pareto solutions was modified. A new metric named as 
the closeness–distance was substituted for the crowded-comparison operator in the 
standard NSGA-II. This new metric guides the Pareto solutions toward the 
extreme points on the Pareto fronts which are, in fact, the global optimum values 
of the objective functions. The model was applied to an example and to a relatively 
large pipe network. It’s concluded that small uncertainties (estimation of pipe 
friction coefficients and nodal demands) in the network can result in large 
uncertainties in the hydraulic responses and significantly influence the system's 
performance reliability. The application of the NSGA-II makes the problem 
solution more systematic and computationally more efficient so that, many of the 
fuzzy hydraulic responses can be simultaneously analyzed in only one single 
simulation run. 
     Beygi et al. [7] considered two urban water distribution networks (WDN) 
optimization design problems having different objectives, including initial costs 
and hydraulic performance improvement of the network by satisfying given 
hydraulic constraints. The main objective was to simultaneously consider the 
utilities of both consumers and investors that are the main beneficiaries of such 
infrastructures. Initially, without any need to obtain input data from stakeholders, 
an acceptable solution set was calculated a fast messy genetic algorithm (FMGA). 
After it, the appropriate alternative design was achieved by using Nash’s and 
Young’s bargaining models. It’s concluded that the obtained alternative for both 
water distribution networks showed that for constant decision making authorities, 
use of either Young’s or Nash’s bargaining models yield the same results. It’s also 
concluded that investors and consumers approximately achieve 86% of their 
utilities using the same decision-making authority. 
     Maskit and Ostfeld [8] proposed a method for calibrating the leakage 
parameters α, β of equation: q୩ି୪ୣୟ୩ ൌ β୩l୩P୩

஑ౡ, where P is the pressure in pipe k, 
l is the length of pipe k and q୩ି୪ୣୟ୩ is the water losses in pipe k. The pipes in the 
hydraulic network were partitioned according to their properties and for every 
resulted group of pipes, the α, β values were computed using a genetic algorithm 
(GA) linked with EPANET, which changed the α, β values to calibrate the 
hydraulic network. Results were compared with experimental data from the 
hydraulic network and showed reliable matching for the α, β values. 
     Puust and Vassiljev [9] compared the performances of a genetic algorithm and 
a custom research tool (Levenberg–Marquardt) to calibrate (calibrated pipe 
roughness values and demand/leakage calibration) and update the Tallinn 
(Estonia) hydraulic network. Before accomplishing the pipe roughness calibration, 
it was necessary to reanalyze the demand patterns and accomplish some 
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corrections. It’s concluded that both calibration tools performed well and the 
calibration results are comparable with each other to some extent. 
     Marchi et al. [10] presented a method for the rigorous comparison of various 
algorithms for the optimum design of water distribution systems. The method 
includes the following steps: (1) selection of evolutionary algorithms (EA) 
techniques to be compared; (2) selection of appropriate test problems; (3) 
calibration of each EA algorithm for each test problem; (4) final runs of each EA 
method on each test problem; and (5) analysis of the results. The techniques of 
genetic algorithms (GA), particle swarm optimization (PSO) and differential 
evolution (DE) were applied to two frequently used water distribution systems 
(WDS) case studies and to a real-size water distribution system consisting of 476 
pipes to demonstrate the method. It’s concluded that GA can give good results if 
sufficient function evaluations are allowed. PSO performances were good at the 
initial stage of the optimization; however, they do not improve markedly for 
increasing numbers of evaluations. The DE performed well for all three problems 
and was clearly the best algorithm overall. However, its parameters can span over 
a large range of possible values. It’s also concluded that the algorithm 
performances depend on the specific problem and the number of function 
evaluations allowed, that correct calibration is an essential phase for a fair 
comparison of evolutionary algorithms, the best parameters are a function of the 
problem characteristics, of the objective function and of the variants in the 
algorithm operators. Therefore the adoption of configurations tested on slightly 
different versions of the algorithms can lead to quite different results. 

3 Method 

It will be presented a method that uses a hybrid model composed of hydraulic 
network calculation software developed by the authors coupled with a genetic 
algorithm adapted by the authors to suit their necessities. As aforementioned, the 
objective of using the genetic algorithm is to optimize hydraulic networks 
operations when there are valves installed in a hydraulic network. To reach the 
objective, the head loss coefficients of valves (kvs) will be the parameters 
(unknowns) generated by the genetic algorithm. If there aren’t any valves in the 
hydraulic network, the proposed method won’t work. Nevertheless, the authors 
guess that everybody who works with hydraulic networks will agree that the 
possibility of a hydraulic network without any valve installed in it is almost equal 
to 0 (zero). 
     The authors used the following equations to optimize the hydraulic networks 
operations: 
 

P୫୧୬ ൌ min∑ ∑ fp୬୲
୧ୀଵ

୲୮
୨ୀଵ ρgQ୨୧∆H୨୧                         (1) 

 
     The objective function of the genetic algorithm is given by eqn. (1), where 
(Pmin) is the minimum sum of the dissipated hydraulic power of any given 
hydraulic network for all calculation time steps of the extended period simulation, 
(tp) is the number of calculation time steps, (nt) is the number of pipes in the 
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hydraulic network, (fp) is the penalty function, (ρ) is the specific mass of the fluid, 
(g) is the acceleration of gravity, (Q) is the discharge at time step “j” in pipe 
“i” and (∆H) is the head loss at time step “j” in pipe “i” (Diniz et al. [1]). It’s 
important to mention that all symbols are in the International System of Units. 
     The imposed restrictions will be the allowable maximum and minimum 
pressure heads limits on nodes (Hpmax and Hpmin respectively) and the maximum 
and minimum reservoir water levels limits (also Hpmax and Hpmin respectively). If 
restrictions are not attended, a penalty to the objective function is applied. 
Penalties are applied by the penalty functions. In eqns (2), (3) and (4), Hp is the 
pressure head in any node and also the reservoir water level. Penalties are 
calculated by the following equations (Diniz et al. [1]): 

  fp ൌ 1   if   Hp୫୧୬ ൑ Hp ൑ Hp୫ୟ୶      (2) 

  fp ൌ െቀ
ଶୌ୮ିୌ୮ౣ౗౮ିୌ୮ౣ౟౤

ୌ୮ౣ౗౮ିୌ୮ౣ౟౤
ቁ   if   Hp ൏ Hp୫୧୬     (3) 

  fp ൌ ቀ
ଶୌ୮ିୌ୮ౣ౗౮ିୌ୮ౣ౟౤

ୌ୮ౣ౗౮ିୌ୮ౣ౟౤
ቁ       if   Hp ൐ Hp୫ୟ୶.       (4) 

     The internal input data, for the genetic algorithm operators, is the population 
size, the substring length, the  total string length (substring length X number of 
unknowns), the number of generations to be calculated, the crossover probability, 
the mutation probability, if it’s going to use elitism or not, the scaling constant and 
the number of unknowns. The total number of unknowns is equal to the number 
of valves installed in the hydraulic network multiplied by the number of time steps 
the valves will work in the extended period simulation. Each time step is equal to 
1 (one) hour, so it’s simple to conclude that the time steps to calculate the extended 
period simulation will vary from 1 (one) to 24 (twenty four). It’s important to say 
that the user defines the input data for the genetic algorithm. 
     The main external input data to be yielded by the user to calculate the steady 
state is the hydraulic network topology, the pipe absolute roughness, the kinematic 
viscosity and the specific mass of the fluid, the allowable maximum and minimum 
pressure heads on nodes, the nodal demands, the node elevations, the reservoir 
water level and the allowable maximum and minimum reservoir water levels. If 
the extended period is going to be simulated, the main input data is the number of 
valves, the valves coefficients when they are closed, the number of boosters, data 
of the booster curve (shutoff head, head for the best efficiency point etc.), the 
number of time steps to be calculated (at most 24 (twenty four)) and the nodal 
demands for each time step. 
     It’s important to notice that the purpose of this paper is to show an application 
of hydraulic network calculation software coupled with a genetic algorithm to 
optimize hydraulic networks operations. The purpose isn’t to explain how the 
adapted genetic algorithm or developed hydraulic network calculation software 
works. So, it won’t be emphasized the technical terms referring to the genetic 
algorithm and the equations used in the hydraulic network calculation model. If 
the reader wishes to know more about these two tools, it’s necessary to look for it 
in Diniz et al. [1]. 
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     The process begins with the genetic algorithm generating randomly the initial 
population, that is, the total number of unknowns (kvs) for each individual for the 
first generation. It means that if the population is composed of 20 (twenty) 
individuals, the genetic algorithm will generate 20 (twenty) sets of kvs, that is, one 
set for each individual. After generating the initial population, hydraulic network 
calculation software is called to calculate the hydraulic variables (pressures on 
nodes, discharges in pipes, reservoir levels, head losses in pipes caused by 
discharges and valves and friction factors of pipes) for each individual. After 
calculating the hydraulic variables for each individual, the objective function is 
evaluated for each individual and the best one is selected, that is, the individual 
with the kvs that yielded the hydraulic network with the minimum dissipated 
hydraulic power sum for all calculation time steps of the extended period 
simulation for the first generation. The genetic algorithm keeps the best individual 
of the first generation and then begins to calculate the second generation by 
creating a new population. After calculating the hydraulic variables for each 
individual of the second generation, the objective function is evaluated again for 
each individual and the best one is selected by the genetic algorithm and compared 
to the best individual of the first generation. If the best individual of the second 
generation has a dissipated hydraulic power sum littler than the best individual of 
the first generation, the genetic algorithm replaces the first individual by the 
second one, keeps it and begin to calculate the next generation, otherwise the 
genetic algorithm keeps the first individual and begin to calculate the next 
generation. The process finishes after the genetic algorithm have calculated all 
generations. After it, it’s printed 3 (three) output files. The first one yields the 
hydraulic variables for the steady state. The second one yields the hydraulic 
variables for the extended period simulation. The results of the second output file 
represent the hydraulic network with the minimum dissipated hydraulic power 
sum. The third output file yields the values of kvs and the dissipated hydraulic 
power sum for each generation. 

4 Results 

Hydraulic network calculation software and the genetic algorithm were tested for 
the hydraulic network of the city Campo Bom, RS, Brazil. The authors changed 
the elevations and demands of a few nodes and the reservoir water level from the 
original scheme of this hydraulic network to suit their necessities. 
     First, the steady state was calculated and the results showed that nodes 18 and 
22 had under pressure problems (in Brazil, the maximum and minimum allowable 
pressure in hydraulic networks is 50mH2O and 10mH2O respectively). After it, the 
extended period was simulated having 2 (two) boosters installed in pipes 18 and 
36. The results showed that the under pressure problems of nodes 18 and 22 were 
solved, but on the other hand, nodes 19, 20, 21 and 23 acquired over pressure 
problems in 4 (four) time steps along the day. To overcome these problems, it was 
installed 3 (three) gate valves in pipes 21, 23 and 24 as shown in fig. 1. The 
absolute roughness of all pipes is 0.1 mm. The yielded results will be shown and 
discussed ahead. 

Water Resources Management VIII  177

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 196, © 2015 WIT Press



 

Figure 1: Modified hydraulic network scheme. 

 
     As just mentioned, it was necessary to install 3 (three) gate valves in the 
hydraulic network. When there’s at least a valve installed in the hydraulic network, 
the hybrid model uses the genetic algorithm. The main internal input data for the 
genetic algorithm was defined as follows: population size: 10 individuals; 
substring length: 13; number of generations: 1 (one) and 200 (two hundred); 
crossover probability: 95%; mutation probability: 2%; elitism: applied and scaling 
constant: 1.5. The number of unknowns (12 for each individual) and the total string 
length is calculated by the genetic algorithm itself. The values for the input data 
were chosen because the authors’ experience, based on several trials, shows that 
these values yield the best results, at least for the present problem. 
     As aforementioned, the user decides how many time steps will be calculated in 
the extended period simulation. Since there are 4 (four) time steps with over 
pressure problems, it was decided to calculate the extended period simulation only 
for the time steps with over pressure problems. It was done because the genetic 
algorithm takes a long time to yield the results and it would take a very long time 
if the extended period was simulated for the 24 (twenty four) time steps of the day. 
This action, of course, brings consequences. One of the consequences is that it was 
necessary to assume that the reservoir water level changes only in the calculated 
time steps, that is, between two calculation time steps, the reservoir water level 
remains steady. To make it clearer, let’s imagine that the time steps with over 
pressure problems occurred at 0:00 am, 6:00 am, 12:00 pm and 18:00 pm. The 
extended period was simulated only for these time steps and the reservoir level 
changed only in these time steps. Between 0:00 am and 6:00 am, 6:00 am and 
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12:00 pm, 12:00 pm and 18:00 pm and 18:00 pm and 0:00 am the reservoir water 
level was considered steady, since as it was said, the extended period wasn’t 
simulated among these time steps. 
      It’s important to say that besides the hydraulic variables, the second output file 
also yields the minimum dissipated hydraulic power sum regardless there are or 
not valves installed in the hydraulic network, the head losses sum caused by 
discharges, the head losses sum caused by valves and the total head losses sum 
(discharges plus valves) in the whole hydraulic network for all calculated time 
steps. It’s also important to mention that when the hybrid model yields the results 
(hydraulic variables) that represent the hydraulic network with the minimum 
dissipated hydraulic power sum, all nodal demands (input data) are obeyed, all 
pressure heads on all nodes are between the allowable maximum and minimum 
pressures and the reservoir water level is also between the allowable maximum 
and minimum reservoir water levels. 
     As aforementioned, the number of generations was 1 (one) and 200 (two 
hundred). The objective of running the genetic algorithm with only 1 (one) 
generation was to try to simulate a solution without planning the valve openings. 
This unplanned solution solves the over pressure problems, but it doesn’t take into 
account the consequences this solution cause to the hydraulic network. The other 
objective was to try to reach the best and worst solution when only 1 (one) 
generation is calculated and to analyze the consequences to the hydraulic network. 
When running the genetic algorithm for 200 (two hundred) generations, it yields 
a solution with optimal valve openings settings. 
     It was necessary to accomplish several trials because although the genetic 
algorithm tends to converge to a steady solution, it generally yields a different 
solution (close to the previous one) each time it’s run, especially if the number of 
generations to be calculated is little. 
     Observing the values of the head losses sum in table 1, it’s noticed that the 
minimum total head losses sum (374.39mH2O) is, of course, for the extended 
period simulation without valves installed in the hydraulic network. Comparing 
the head losses sum for the best result and for the worst result when 1 (one) 
generation is calculated to the minimum one, it’s observed that the total head loss 
increased 21.96mH2O (5.9%) and 51.07mH2O (13.6%). Comparing the head 
losses sum when 200 (two hundred) generations are calculated to the minimum 
one, it’s observed that the total head loss increased 10.17mH2O (2.7%). As 
aforementioned, the three solutions (valves installed) solve the over pressure 
problems in the hydraulic network, but when only 1 (one) generation is calculated, 
the head losses increase too much and it’s not good, because ultimately, energy is 
being wasted, since the head loss unit is, using other words, energy per weight 
unit. When 200 (two hundred) generations are calculated, the head losses increase 
as little as possible and ultimately, energy is being saved. 
     The head loss coefficients (kvs) values of the valves installed in the hydraulic 
network which provided the minimum dissipated hydraulic power value obtained 
for 1 (one) generation (97961.55W) and 200 (two hundred) generations 
(96252.43W) are shown in tables 2 and 3 respectively. 
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Table 1:  Dissipated hydraulic power sum and head losses sum yielded by the 
hybrid model. 

 
dissipated 
hydraulic 

power sum (W)

head losses sum 
(discharges) (m)

head losses sum 
(valves) (m) 

total head 
losses sum 

(discharges + 
valves) (m) 

no valves 95135.40 374.39 0.00 374.39 
1 generation 
(best result) 

97961.55 382.35 14.00 396.35 

1 generation 
(worst result) 

102111.07 391.76 33.70 425.46 

200 generations 96252.43 377.16 7.40 384.56 
 

Table 2:  Values of kv for the minimum dissipated hydraulic power value – 1 
(one) generation (best result). 

 Period 1 Period 2 Period 3 Period 4 
Gate valve 1 83.21 90.23 31.99 75.23 
Gate valve 2 36.45 3.31 27.39 33.26 
Gate valve 3 50.34 42.12 94.30 24.14 

 

Table 3:  Values of kv for the minimum dissipated hydraulic power value – 200 
(two hundred) generations.  

 Period 1 Period 2 Period 3 Period 4 
Gate valve 1 97.98 96.67 80.36 85.67 
Gate valve 2 50.51 0.16 0.34 8.73 
Gate valve 3 31.99 21.61 11.65 8.82 

 
     Observing the values of table 3, it’s noticed that the kvs values for gate valve 2 
are almost 0 (zero) in periods 2 and 3. It means that, in practice, gate valve 2 could 
be left open in periods 2 and 3. It doesn’t happen to the same kvs values of table 
2. This is one of the reasons the head loss increase so much when just 1 (one) 
generation is calculated. Another reason is because, in a general way, the values 
in table 3 are much littler than the values in table 2. It’s important to notice that 
the genetic algorithm worked with continuous values instead of working with 
discrete values. In practice, it would be necessary to adjust the obtained kvs values 
for the gate valves, since a gate valve openings are divided in 8 (eight) parts. 

5 Conclusions 

This paper presented a method to minimize the head losses increase in a hydraulic 
network by using a genetic algorithm to minimize the dissipated hydraulic power 
sum in the whole hydraulic network for all calculation time steps of the extended 
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period simulation through optimal valve openings settings. It was concluded that 
when the valve openings are planned, the head losses increase only the amount 
necessary to solve the over pressure problems and it prevents energy waste. On 
the other hand, when the valve openings are unplanned, although the over pressure 
problems are also solved, the head losses increase beyond the necessary and it 
wastes energy. It was also concluded that the method worked satisfactorily for the 
studied hydraulic network. Another conclusion is that this method brings a 
different approach regarding energy saving, which is directly associated to costs 
savings. 

6 Recommendations 

The developed method needs to be tested in other hydraulic networks. It would be 
good to test the method using other optimizations techniques, since the genetic 
algorithm takes a very long time to yield the results. As aforementioned, the 
extended period was simulated only for the time steps with over pressure 
problems. So, it’s necessary, no matter how long it will take, to simulate the 
extended period for the 24 (twenty four) time steps of the day to analyze if the 
reservoir will be able to supply the hydraulic water network nodal demands along 
the day, since there are valves and boosters working and the maximum and 
minimum reservoir water levels limits need to be obeyed. Other recommendation 
regards the boosters. When the second output file yields the hydraulic variables 
for the extended period simulation representing the hydraulic network with the 
minimum dissipated hydraulic power sum, it wasn’t analyzed if the boosters are 
working far from the best efficiency point. It also has to be analyzed. It’s also 
necessary to test different kinds of valves, since only gate valves were tested. 
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