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Abstract 

As is the case with many large lakes, field sampling records (and the 
understanding of historical water quality) in the Great Salt Lake natural surface 
water system are heavily limited due to time and cost constraints, as well as a 
number of independent organizations collecting and managing data. To address 
these deficiencies, remote sensing of surface water quality is used to hind-cast 
historical conditions of algal blooms in the GSL surface water system 
(GSLSWS). This system is unique because its lakes are closely connected, yet 
have widely varying characteristics and conditions. An approach for 
development of lake-specific models is demonstrated, using historical Landsat 
and field-sampled data. This study builds on previous studies of historical water 
quality which have used broad-spectral remote sensing data and near-coincident 
field samples by evaluating the ability of models to accurately estimate water 
quality under optically complex conditions (such as high turbidity and shallow 
conditions). We also examine the spatiotemporal variability of the field-sampled 
data and address the issue of near-coincidence between a historic dataset of field-
samples and remote sensing images. Existing field sampling campaigns for this 
area do not provide sufficient information about adverse conditions or long-term 
spatiotemporal patterns. Results of the remote sensing model application 
however may provide useful metrics for algal bloom dynamics, including timing 
of blooms, duration and spatial extent of algal blooms, and how these dynamics 
vary over time and within the surface water system. Products of the remote 
sensing models broaden the foundation of understanding of water quality 
conditions, which can be used to move forward with better monitoring and 
management practices. 
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1 Introduction 

The Great Salt Lake surface water system (GSLSWS) consists of the Great Salt 
Lake, Utah Lake, and the Jordan River, which flows from Utah Lake to the Great 
Salt Lake. The system offers an excellent opportunity to examine a large surface 
water system that is closely connected with a rapidly developing urban area. The 
GSLSWS is highly unique in the degree of urban influence and management of 
the system, the physical and chemical characteristics of the inland lakes, and the 
interconnected relationship of the system’s distinct water bodies. The GSLSWS 
begins with a series of streams and reservoirs in the Wasatch Mountains which 
flow west through the urban area of Salt Lake City-Provo, Utah and discharge 
into the Great Salt Lake and Utah Lake. Water from Utah Lake flows north 
through the Jordan River, which also receives discharge from the urban area 
before it terminates in the southern end of Farmington Bay. Each of the bays of 
the Great Salt Lake (Gilbert, Farmington, Gunnison, and Willard/Bear River) are 
considered as distinct lakes, due to both natural divisions and man-made 
causeways which result in distinct characteristics in each of the bays. For 
instance, the southern bays are much less saline than the northern bays and are 
generally deeper than the northern bays due to restricted flow through breaches 
in the east-west causeway.  
     The most heavily trafficked portions of the lake (for recreation and for 
wildlife habitat) are these southern bays and Utah Lake. Farmington Bay 
supports an ecosystem that is of hemispheric importance for millions of 
migratory birds who come to nest and feed and on the abundant insects and brine 
shrimp. It is also a popular recreation spot for hunters, bird-watchers, and 
outdoor enthusiasts. Gilbert Bay plays an important role in both the brine shrimp 
and recreation industries. Utah Lake is an important year-round habitat for 
waterfowl and a number of fish, including the endangered June Sucker. Like the 
southern half of the GSL, Utah Lake is also an important staging location for 
many migratory birds. Thus, for the purpose and focus of this study, the 
GSLSWS is limited to this portion of the system (as highlighted in Figure 1).  

1.1 Harmful algal blooms in the GSLSWS 

A major water quality concern in the GSL system is the amount of algae in the 
lakes. While algae are a key component of the food web, excessive amounts of 
algae or harmful algal blooms (HABs) can negatively affect the lake ecosystem. 
HABs can be either photosynthetic algae whose cellular structures or collective 
biomass negatively affect food web dynamics or protozoans with the ability to 
produce toxins [1]. It is important to note that not all species (such as some 
diatoms with hard outer shells) are able to be digested by the shrimp and insects. 
These non-beneficial algae mainly contribute to habitat/aesthetic problems 
caused by algal decay and depletion of dissolved oxygen as bacteria decompose 
the algae [2, 3]. 
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Figure 1: Overview of Great Salt Lake Surface Water System. For the purpose 
of this study, the system is limited to the lakes outlined in colour. 

     Additionally, one of the most common species of algae in Farmington Bay is 
a toxic cyanobacteria, Nodularia [3, 4]. Cyanobacteria have been shown to cause 
illnesses and rashes on swimmers in several Utah lakes, and they have even been 
linked to several canine deaths [3, 5].  Both toxic and non-toxic HABs have 
impacted the GSLSWS by negatively affecting lake aesthetics [6]. With bird-
watching, fishing, and recreation drawing thousands of visitors to the lakes each 
year, there is considerable motivation to study the conditions that are impacting 
lake aesthetics, ecosystem health, and posing risks to human/animal health. 

1.2 Current and alternative monitoring of HABs in the lake system 

Despite the motivation for studying algal blooms in the GSLSWS, there is a 
relatively limited understanding of algal bloom dynamics (such as timing, spatial 
extent, or overall magnitude) and the factors that contribute to these dynamics. A 
number of studies, based on concentrated field sampling campaigns, have 
suggested connections between algal population dynamics and in-lake 
characteristics such as salinity, nutrients, water temperature, etc., [4, 7–11]. 
Water resource managers in the region are especially interested in understanding 
how external factors, such as changing climate and hydrologic conditions, and 
urbanization of local watersheds [12, 13] contribute to poor lake conditions and 
HABs. However, this is significantly inhibited due to the limited and sporadic 
nature of the historical field record, as well as differences in data management 
and sharing techniques between organizations that monitor water quality in the 
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region. Improving the current understanding will require alternative forms of 
monitoring and representing the system. In recent decades, remote sensing 
models have been used to overcome the limitations associated with traditional 
water quality monitoring and assessment techniques. Remote sensing methods 
rely on the fact that natural surfaces reflect energy (radiance) from the sun back 
into space, which can be measured remotely by a satellite-mounted sensor or by 
an airborne camera. Reflected radiance is wavelength-dependent, and the amount 
of reflectance at each wavelength can be influenced by the absorption of 
pigments in algae and other constituents. This results in distinct spectral 
signatures for different lake conditions, such as pure water, water with algae, or 
water with suspended sediments. The spectral signature is influenced by the 
amount of chlorophyll-a (chl-a) – as well as other pigments and in-lake 
constituents - which allows for detection of approximate concentrations.  
     Over the past 35 years, remote sensing applications for water quality have 
been demonstrated using a range of instruments, locations, modelling 
complexity, and application scope. However, relatively few studies [14, 15] 
exploit historical records to develop models or examine long-term trends, and 
many water quality monitoring agencies do not utilize the potential information. 
This study demonstrates simple approach for developing and applying remote 
sensing using an existing historical field sampling record and Landsat (due to its 
long-term continuous record and availability of processed data products). 
Additionally, we evaluate this approach in light of the limitations of historical 
datasets and the unique study area of the GSLSWS. Enhancing the long-term 
historic water quality record of the GSLSWS through remote sensing will help 
water quality managers understand the system more holistically. 

1.3 Challenges associated with remote sensing of Chl-a 

Like many lake systems, the irregular nature of the historic record for the study 
area results in few exact matches between field sampling and image acquisition 
dates. In ocean/lake water quality remote sensing literature, there is a range of 
time-windows for considering data to be a “match.” Depending on the study, 
these windows range from a difference of ±3 hours [16], 1 day [17], 7 days [18, 
19], to ±10 days [14] between the satellite image acquisition and the field sample 
used for calibration. Often, a particular time-window for near-coincident matches 
is arbitrarily chosen (e.g. using an arbitrary increase in the percentage of samples 
that match with a satellite image [20]) rather than demonstrating an improved 
model performance to justify the use additional near-coincident data or actual 
short-term temporal variability in the field record.  
     Additionally, there may be potential challenges to remote sensing models in 
the GSLSWS caused by the reflectance of the bottom surface and high turbidity 
(particularly in Utah Lake) which can interfere with the spectral signature of the 
surface water. Several studies have used hyperspectral sensors to account for 
these interference effects [21] and others have used non-linear regression 
techniques or complex spectral un-mixing techniques with broad-band sensors 
[22, 23].   
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2 Data and methods 

2.1 Description of data 

Landsat surface reflectance imagery data are provided by the USGS and hosted 
on the Google Earth Engine data catalogue. These data are generated from 
Landsat-5, 7, and 8 imagery which has been processed using Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS) software to provide surface 
reflectance. The use of surface reflectance data helps eliminate the effects 
atmospheric interferences such as aerosols that may be present in top-of-
atmosphere reflectance products.  
     In-situ samples of chl-a (corrected for pheophytin) were collected by the 
United States Geological Survey (USGS) and the Jordan River/Farmington Bay 
Water Quality Council for the Great Salt Lake, and by the Utah Division of 
Water Quality (UDWQ) for Utah Lake. The number of available data, given the 
relaxation of the time-windows, is summarized in Table 1.  

 

Table 1:  Number of near-coincident “matches” by time-window. 

Time-
Window 

Farmington Bay Gilbert Bay Utah Lake 

Same Day 5 54 6 
±1 day 12 165 24 
±2 days 22 372 57 
±3 days 26 429 65 
±4 days 34 456 72 
±5 days 34 491 72 
±6 days 45 544 92 
±7 days 45 580 95 

 

2.2 Variability in the historic record 

As mentioned previously, the field record for the study area is highly limited in 
the information it can provide about spatial and/or temporal variability because 
of irregular and infrequent revisit times.  shows the variability in chl-a 
concentrations as a percent difference between subsequent samples. Very few 
samples (at the same location) in the historical record were collected within a 
few days of each other, so the true variability over short time periods is not 
easily discerned from this dataset.  
     Thus, despite a large dataset of historical samples, the historical datasets 
alone cannot be used to determine an appropriate time-window for near-
coincident matches. Instead, a number of time-windows from ±1 to 7 days of the 
in situ sample collection date are considered for model development. 
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Figure 2: Temporal variability in Chl-a magnitudes of subsequent samples. 

2.3 Model specification 

The process of imagery data-retrieval and formatting was automated through a 
python script and the ee (Google Earth Engine) Python package. The program 
connects to the Google Earth Engine data catalogue, filtered imagery data from 
within the specified time-window, and retrieved reflectance data from pixels 
within 1 meter of the corresponding field sample location. The python script and 
specifically the use of the ee package facilitated rapid data retrieval and 
eliminated the need for storing and managing large imagery datasets on local 
computers or servers [24]. The USGS surface reflectance product also contains 
additional bands for a cloud mask and level of confidence for the cloud mask, 
which eliminates the need to manually verify whether the pixel is free of clouds 
and shadows.  
     Empirical models were then developed for time-windows ranging from 0 to 
±7 days. First, stepwise regressions were used to determine significant 
parameters from all bands, band ratios, and indices from literature [25, 26], and 
for Gilbert Bay, a seasonal indicator variable for June-September when chl-a 
values are lower in magnitude and less variable. A generalized linear modelling 
approach with a log-link function was used to fit the data and account for non-
normality of the dependent variable. 
     Each of the lake-specific models were evaluated for model stability and 
predictive ability through a k-fold (k=5) cross validation technique 
and comparing the model R2 and the average R2 from the k-folds.  
     Model predictive ability in optically complex conditions (shallow depth and 
high turbidity) was evaluated by comparing the RMSE for a subset of the 
samples in which the depth of the water column was recorded and where 
turbidity was also measured at the same location and date as chl-a. 

3 Results 

3.1 Evaluating near-coincident data 

While other studies report an increase in model descriptive ability (reported as 
R2) as the time-window is increased, the GSLSWS data do not demonstrate the 
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same behaviour.  shows that, generally, as the time-window is increased, the 
descriptive ability of the model does not increase. For Farmington Bay and Utah 
Lake, where there are considerably fewer potential matches, there is a local 
maximum in model performance at ±4 days, which may indicate this to be an 
appropriate choice for model development and application. 
 

 

Figure 3: Coefficient of determination (R2) and number of near-coincident 
samples per time window. 

3.2 Performance in highly turbid and shallow conditions 

To evaluate the performance of the models in optically complex conditions, 
subsets of the data were created that corresponded with additional measurements 
of lake depth (available for Gilbert Bay), and water clarity (for Utah Lake), as 
measured by total suspended solids (TSS) and Secchi depth. Data was further 
subset using percentiles to represent poor optical conditions. Independent t-tests 
indicate that the mean of the model errors for samples in the lowest 25% of the 
lake depths in Gilbert Bay is not statistically significantly different from the 
mean of the errors for samples in deeper parts of the lake (p-value=0.18). For 
Secchi depth, the mean in model errors was not significantly different between 
samples corresponding with the bottom 25% and samples with greater Secchi 
depth measurements (p-value=0.15). For TSS however, the t-test indicated a 
significant (p-value=0.01) difference in mean model errors for highly turbid (>75 
percentile) areas of Utah Lake.  

Water Pollution XIII  41

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 209, © 2016 WIT Press



3.3 Potential model application 

One of the primary benefits for using historical imagery data and remote sensing 
is the ability to estimate historical conditions where there are no other data 
available. To demonstrate, the model for Farmington Bay was applied to a 
median-filtered image for the month of September from 1990–1994 using the 
Google Earth Engine API. Estimates for two locations, near Antelope Island, and 
the other near the inlet south of the causeway are shown in .  
 

 

Figure 4: Estimates of Chl-a for two locations in Farmington Bay. Red: near 
the inlet; black: near Antelope Island. 

     While there are no samples in the historical record from 1990-1994, estimates 
of chl-a at individual locations (or regions) can be obtained. The simple example 
illustrated in Figure 4 demonstrates a case where monitoring agencies may be 
interested in how conditions near freshwater inflows to the lake compare to other 
areas, including areas near popular recreational spots. In this case, it appears that 
the area near the inlet generally experiences higher levels of chl-a than areas near 
the island. 

4 Discussion and conclusion 

Despite the limitations in the existing field record, near-coincident data has been 
shown to be useful in development of chl-a estimation algorithms. According to 
the datasets and model development techniques demonstrated in this study, 
shorter time-windows were found to be generally more appropriate as they 
produced models with higher descriptive ability. While interferences from 
shallow waters and high turbidity may pose an issue to remote sensing 
applications in this area, preliminary analysis indicates that the remote sensing 
models may perform as well in these complex waters as in other areas.  
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     The remote sensing models developed in this study demonstrate the utility of 
exploiting available datasets (both imagery and historic field samples) to gain 
additional information and enhance understanding of long-term trends in a 
complex body of water. The temporal trends provided by the remote sensing 
models provide a more complete description of historical conditions in the lake 
system. This allows for comparison in different parts of the lake that have not 
been monitored in the past, as well as for more frequent estimates for areas that 
are monitored to fill in gaps in the historical record. Additionally, water quality 
and natural resource professionals may be interested in other algal bloom 
dynamics that affect recreation and wildlife habitat include the timing of high 
magnitudes, the overall conditions of the lake, and the spatial extent of the 
blooms. These measurements, while not available through the historical field 
sampling record, can be obtained through remote sensing estimates and 
supplement current monitoring and evaluating efforts.  
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