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Abstract 

User equilibrium in a congested network has been conventionally formulated 
using mathematical optimization procedures. These approaches assume drivers’ 
behaviours with complete information in the sense that each driver knows the 
other drivers’ behaviours and their payoff functions. If each driver doesn’t know 
the other drivers’ strategies, he cannot optimize his strategy. In such a situation, 
an adaptive heuristics may be a relevant approach to get a better solution. To 
establish behavioural rules of route choice under incomplete information, we use 
a smooth fictitious play and a regret matching model developed in game theory, 
and combine these two approaches.  We also propose a new algorithm that can 
be applicable to a complex situation in traffic environments.  
Keywords: smooth fictitious play, regret-based strategy,  -Hannan consistency, 
reinforcement learning. 

1 Introduction 

Consider dynamic environment where drivers choose their routes repeatedly 
every day. Each driver is equipped with a route guidance system which can be 
used to collect the information about travel times of routes he would choose by 
receiving signals from the traffic control centre. Each driver knows his own 
payoff function, but he does not know those of the other drivers. Moreover, each 
driver can know in hindsight the vector of payoffs he would have obtained if he 
had chosen any of his possible actions. We are interested in not only such 
informed drivers, but also in naïve drivers, who cannot use the route guidance 
system. Their knowledge about travel is far restricted: a naive driver does not 
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know the other drivers' payoff function nor his own payoff function; the only 
information he knows is his realized payoff obtained after finishing his trip. 
     To establish behavioural rules of route choice under incomplete information, 
we use a game-theoretic approach. In particular, we are interested in regret-based 
procedures that have been developed in a mutually complementary manner in the 
fields of game theory and machine learning. The regret-based approach is 
repeated games consisting of one-shot games with incomplete information, and 
assumes that each player knows his own payoff function but not those of the 
other players, and that the mixed strategy chosen by each player depends, in 
some ways, on his past payoffs. 
     One of the most appealing properties of no-regret rules is that it guarantees 
that a player’s long-run average payoff is as large as highest payoff that can be 
obtained against the empirical distribution of play of the other players. This 
property is called Hannan consistency. For the naïve driver problem also known 
as the unknown game, there does not exist well-established theory in the game- 
theoretical framework; however, there is a numerous literature in reinforcement 
learning in which a single player who encounters uncertain environment is 
modelled. 
     The main object of this paper is to show that no-regret rules are suited to 
building learning algorithms for the route choice behaviour with incomplete 
information. While regret matching algorithm of Hart and Mas-Colell is suited 
to the informed driver problem, for naïve drivers it requires some modification 
because the rules should include prediction of players for unused paths. Leslie 
and Collins [5] propose a coupling approach of smooth fictitious play and 
reinforcement learning for the naïve driver problem. Our approach is similar with 
that of Leslie and Collins, but different in that it includes the visiting frequency 
to each route and identification process of the path-variance parameter.  
     This paper is organized as follows.  In Section two, we give notations and 
terminologies associated with regret-based approach and flows in networks. 
After introducing the regret-based algorithm of Hart and Mas-Colell in Section 
three, we move on the main model in this paper in Section four. We firstly 
address a smooth fictitious play which approximates the Hannan-consistency. 
The smooth fictitious play assumes that all players observe the actions of all 
other players and also know the structure of the game. This assumption is too 
strong to apply directly to our problem. We need a model that lays "rule of 
thumb" that people are insufficiently responsive to alternatives that they do not 
have full knowledge about. We propose a modified approach with reinforcement 
learning to find equilibrium for the naïve driver problem. In the final section, we 
show some computational results that characterize the model proposed.   
     Throughout this paper, we restrict our attention to drivers’ route choice 
behaviours for paths connecting a single origin-destination to avoid a complex 
notation. 
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2 Notation  

A one-shot game is a three-tuple [ , ( ) , ( ) ]i i
i i N S r  where {1,2, , }NN   

is a set of players (also called an agent or a driver) , iS and ir are a set of pure 
actions and a vector of payoffs for each iN , respectively. A payoff function 

is defined as :ir S  where i
i  NS S . Player i  and its opponents i  

choose an action is  and is  from the action sets iS and iS  , respectively. The 
players can employ randomized or mixed actions: For each player i , 

( )i i   S is a set of mixed actions, where ( )  denotes the space of 

probability distributions over a set. Then, for a mixed action 

profile ( , )i i i i   π π π , an expected payoff is defined by 

 

( ) ( ) ( )i ir r



s S

π s s  (1) 

     Suppose that the game   is played repeatedly through time 1,2,t   , and 

denote ts the action profile at time t. The payoff vector in period t is : ( )t tr r s , 

and : (1/ )t tt
r t r

 
   is the average payoff vector up to t.  A strategy (or a 

policy) for a player i  assigns to every history of play 1 1
1 1 1( )t t

t s     
    S , 

a randomized choice of action 1( ) ( )i i i
t t t  π π S  at time t. Then a 

learning algorithm is a sequence of maps 1:t t  π , and 1( | )i i
t ts    is 

the probability that i plays is at period t following the 

history 1 1 1 1 1{( , ), , ( , )}t t t    s r s r .  

     Consider a single origin-destination (O-D) pair connected by paths denoted 
by positive integers, pP , in which {1, 2, , }MP   represents a set of 

paths. Path flows are denoted by a M-dimensional 

vector 1( , , , )p Mh h hh   . A set of paths available to player i  is denoted 

by ,i iP N , thus it follows that i
i  NP P . iM  is the number of paths used 

by player i . Let L  be a set of links, and let ,
p

f    are flow on link L  and 

an element of link-path incidence matrix, respectively. In the current contexts, an 

action is  by agent i  implies choosing a path ipP  or a set of links, in which 

it follows that i iS P . If there is no confusion, we use i
p and 

( , ),i i i ip s p s   S interchangeably. The same rule is applied to a payoff 

and the empirical distribution as well. The relative frequency of visiting path 
p by player i  at time t is defined by 
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     Therefore, a path-flow and a link-flow up to t are defined using the empirical 
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     The average payoff through to time t is defined by 

 1

1
( , ) ( , )

t
i i i i i i

t tr r s s
t  


 



 x x . (4) 

     Let denote link travel time on L at time t, by ( )tc f , where each link flow 

is defined as the time average. Then, we have travel time of path p PÎ  as:  

 
( ) ( ( ))t

p t p tu c



L

h f h 


. (5) 

     Since each driver has his own value of time, his perceived cost for path p is 

evaluated by 0( ) ( )i i
p p pu w u u h h , where iw  represents the value of time of 

driver i  and 0pu  the pecuniary cost of path p. Then, we define the average 

payoff of path p as ( ) : ( )i i
p pr u x x . 

3 Regret based strategies and the informed driver problem 

Following Hart and Mas-Colell [3]) we define the (unconditional) regret of 

player i ; namely, for each one of his actions ik S , the change in his average 
payoff if he were always to choose k :  

 1

1
( ) : [ ( , ) ( )].

t
i i i i
tR k r k s r s

t  





   (6) 

     A strategy of player i  is called Hannan (or universally) consistent if, as t 
increases, all regrets are guaranteed –no matter what the other players do-to 
become almost surely nonpositive in the limit; that is, with probability one,  

 
limsup ( ) 0i i

t tR k for all k S   . (7) 
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     On the other hand, if we replace the right-hand side of (7) by 0   instead 
of 0, that is, 

 limsup ( )i i
t tR k for all k S    (8) 

one obtains  -Hannan consistency (Fudenberg and Levine [1]).  
     The notion of the consistency has a significant implication when considering 
the user equilibrium. To see this, let us introduce the empirical distribution of the 
N-tuples of strategies played up to time t. That is, for every s S , let 

 

1
( ) { : }t t

t   x s s s  

be the relative frequency that the N-tuples s has been played in the first t periods. 
Given a joint distribution ( )x S , the regret of player i  for action k is 

rewritten as follows: 

 

( ) [ ( , ) ( )] ( )

( , ) ( ),

i i i i
k

i i i i

R r k r

r k r for each k







 

  


s S

x s s x s

x x S

 (9) 

     Then, the Hannan set is defined as the set of all ( )x S  satisfying  

 
( ) max ( , ),

S
x x N

i

i i i i

k
r r r k for all i


    (10) 

     In addition, we assume that only those actions k are played whose payoff 
against the empirical distribution of the opponents’ actions is at least as the 
actual realized payoff, that is, 

 1 1( ) 0   only if    ( , )xi i i i
t t tk r r k 

   . (11) 
     Hart and Mas-Colell [4] showed that in any finite game, if a player uses the 
strategy which satisfies (10) and (11), his maximum regret converges to 0. 
     Although distributions in the Hannan set do not correspond to any known 
equilibrium concept in games (except for the special case where the joint 
distribution is given by a product form), the concept of Hannan consistency gives 
a new insight into the user equilibrium in networks where flows and costs are 
defined as the time averages. The user equilibrium flow distributions lie in the 
Hannan set if the payoff of each player is no less than his best-reply payoff 
against the joint distribution of actions of the other players. A universal -
consistency shares the almost same meaning with Hannan-consistency; thus, it is 
useful for modelling a class of stochastic user equilibria. 

4 Regret-based reinforcement learning algorithm 

To solve the naïve driver problem, we combine a smooth fictitious play with 
reinforcement learning. Following Fudenberg and Levine [1], we assume that 

player i  chooses a strategy πi  to maximize 

 ( , ) ( ),π π π Ni i i i ir v i    , 
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where 0   is a sensitivity parameter and : ( )Si iv    is a player-

dependent perturbation function, which is a smooth, strictly differentiable 

concave function such that as πi approaches the boundary of ( )Si , the slope 

of iv becomes infinite. A typical example of perturbation functions that satisfy 
the conditions mentioned above is an entropy function, 

( ) log
P

π i

i i i i
p pp

v  


  . We can now define the smooth best response 

function  

 

( , ) arg max{ ( , ) ( )}

arg max{ ( ) ( , ) ( )}

π

S
π

π π π π

π π

i

i i
i

i i i i i i i i

i i i i i i i

s

s r v

s r s v

 

 

 




 

 
 (12) 

     A smooth fictitious play assumes that player i  observes the actions played by 
his opponents and estimates the current value of each action under the 
assumption that the opponents’ mixed strategies are not changed. To weaken the 
assumptions, we use reinforcement learning in which the play probabilities are 
determined from the actual realizations only. Specifically, each player only needs 
to know the payoffs he received in past periods.  
     We assume that player i  uses a vector q  of the propensity of choice which is 

updated every time when the actual payoffs are obtained through driving 
experiences. Then (16) may be rewritten as 

( ) arg max{ ( ) ( ) ( )}i i
i

i i i i i i i

s
s s q s v  


  S

π

π . 

     The solutions are in the form as: 

 

exp[ ( ) / ]
( )

exp[ ( ) / ]
i

i
i i

k S

q s
s

q k









 (13) 

     First of all, we assume that players don’t have any information about path. At 
time t, player i  randomly selects a path and estimates the propensity (regret) at 

time t by comparing the current payoff i
tr  

with the payoff of the previous 

average, 1
i

tr . While information about only the path that player i
 

chose is 

updated, but the q-values of the other routes remain unchanged: 

  
, , 1 , , 1 , 1{ }

, 1

1
( ) / ,

( ( ) )

i
t

i i i i
p t p t p t p t p ts p

i i i
p t p t t

qq R q
t

where R u u

  



  

  

I

x
 (14) 

     If the cost of path p  at the current period is less than the previous path-cost, 

then player i  would increase the choice probability of path p in the next period. 

,
i
p tR  can be viewed as a sample observed from environment at time t and 
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includes an random error i
t . Therefore, the updating processes take the form of 

the stochastic approximation. Although a similar model is proposed by Leslie 
and Collins [5], our approach is different from their model in that our model does 
not require a two-time scale algorithm and that the visiting frequencies to each 
route is taken into account in updating the q-values . 
     The main problems in applications of the logit-type of route-choice models 
are how to restrict the path set and the identification of the path-variance 
parameter   . We developed a new algorithm to determine the path-variance 

parameter that is determined recursively depending on the pre-specified 
parameter  . 

 

, ,
1

1
( ) ( ( ))

t
i i
p t t p t t tq R

t 

  


  π  

5 Numerical results 

The algorithms for both the informed driver problem and the naïve driver 
problem were tested under various types of networks and link cost functions; 
however, for the sake of space, an application to a random network with BPR 
cost functions. 
     Consider one hundred of drivers who travel from origin 1 to destination 30 
through the network with 30 nodes and 222 links as shown in figure 1. Link cost 
functions are given as the following BPR functions: 
 

 0( ) 1
b

e
e e e

e

t
f

t f a
C


     

   
 

 
     The minimum path is depicted by a green dotted line in the figure. In early 
stage of simulation, the set of path includes 74 routes. In the first step, we 
deleted overlapped routes and determine the set of effective routes with several 
methods like a link-likelihood (Case 1), a similarity of paths (Case 2), C-logit 
(Case 3) and Path-size logit (Case 4). For remained routes, the regret-based 
reinforcement learning algorithm is applied. For given parameter, 0.01  , the 

effective paths are restricted to 9 routes and the path-variance parameter 
converges to 0.31. Figure 2 shows the changes in the Q-values over iterations 
and the rejected routes by  (the paths shown in a shaded area). Figure 3 shows 

the convergence of the path-variance parameter with path delete procedures. In 
spite of procedures adapted in the first step, the path-variance parameter 
converges to almost same value and the algorithm achieves the user equilibrium 
flow patterns 
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Figure 1: A random network for testing. 
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Figure 2: Changes in the q-values and the paths selected by a given value 
of  .  

No. of effective routes is 9 
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Figure 3: Convergence of the path-variance parameter. 

6 Conclusion 

If a driver doesn’t know his travel environment, he cannot optimize his strategy. 
In such a situation, a plausible behavioural rule is adaptive and heuristic ones, 
based on a so-called “rule of thumb”. The regret-based learning is an adaptive, 
heuristic approach, and is closely related with “bounded rationality”. The 
rationality of the regret-based approach can be found in Hannan-consistency. 
This broader class of behavioural rationality seems to be especially useful in 
modelling of travel behaviours. 
     This paper have embodied route choice behaviours in uncertain traffic 
environments as the informed driver problem and the naïve driver problem; and 
proposed the algorithm that couples a smooth fictitious play and reinforcement 
learning, based on the regret matching theory. The algorithm has been tested 
under the various schemes including several type of link cost functions, the 
homogeneous and heterogeneous users, and the deterministic and stochastic 
traffic conditions. In this paper, we have focused on the analysis on convergence 
of the endogenously determined path-variance parameter that is included in a 
logit model.  We must emphasize that our algorithm can effectively calculate the 
user equilibrium under plausible behavioural assumptions.   
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