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Abstract 

Modelling tunnel boring machine (TBM) performance is an important aspect in 
tunnel operations. The use of artificial intelligence techniques such as artificial 
neural networks has been recently introduced to this subject and the results from 
such applications prove their potential in making accurate prognosis. This paper 
presents a review of feed-forward artificial neural network (ANN) development 
and furthermore it illustrates their application by the use of two cases studies 
from Italian and Greek underground projects, where the TBM performance is 
modelled. The results obtained show that the developed ANNs can efficiently 
generalise the TBM behaviour in their respective geotechnical environment, 
having a reliable, effective and consistent performance.  
Keywords: TBM performance modelling, artificial neural networks. 

1 Introduction 

Assessing the performance of tunnelling operations is one of key data for the 
overall success of the project as this issue is directly interconnected with the 
financial performance of the construction works [1]. Even more important is to 
estimate the tunnelling rate of tunnel boring machines (TBMs), as the flexibility 
limitations these particular machines have can lead to considerable downtime. 
These problems are more intense in tunnelling projects constructed in complex 
geological formations [2] and especially in urban areas where the low 
construction depth and the external loading from the buildings increase risk 
conditions [3]. 
     In order to assess the performance of TBMs many researchers have proposed 
various methodologies [4–12] in an effort to express the penetration rate using as 
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inputs data relating to the rock mass properties and/or machine characteristics. 
Beyond mathematical formulae and analytical solutions, artificial intelligence 
systems and more particularly artificial neural networks (ANNs) have not been 
introduced in this issue until recently. Nevertheless, many researchers [13–17] 
have demonstrated very promising results. This is because ANNs can further 
enhance the effectiveness of the analysis, especially in rock engineering 
applications such as the one described, where the interrelated parameters are 
numerous; their interaction is not clearly identified, or is very complicated to be 
explicitly expressed.  
     This paper gives a brief review regarding ANN development and furthermore 
it deals with the modelling of the TBM performance emphasising the 
identification of the performance oscillations throughout the tunnelling period. 
This is made possible by the development of ANNs capable of learning from the 
tunnelling experience and generalising solutions for new sets of input data. 
Hence, the main aim is to produce a tailor-made model, utilised during the 
construction period, capable of providing estimates of the expected tunnelling 
advance rate. To illustrate the efficiency and accuracy of the ANN generalisation 
two case studies are presented in Italian and Greek underground projects, where 
the TBM penetration rate is modelled with respect to the geological and 
geotechnical conditions, as well as the machine characteristics by the use of 
trained neural networks. 

2 Artificial neural networks 

2.1 Definition 

The development of ANNs started as an attempt to understand the operation of 
the human brain and mimic its assessment capabilities. In other words, to be able 
to decide and act under uncertainty or even deal with situations having limited 
previous experience. ANNs are mathematical models consisting of 
interconnected processing nodes (neurons) under a pre-specified topology 
(layers).  
     Neural networks have a strong similarity to the biological brain and therefore 
a great deal of their terminology is borrowed from neuroscience. Their basic 
characteristic is the ability to perform massively parallel computing of the input 
stimulus (data), contrary to the custom mathematical models that are based rather 
on a serial process of mathematical and logical functions [18]. Another 
advantage of the ANNs is their flexibility in data processing, as no deterministic 
mathematical relationship of the examined components is required. Instead, once 
the data is introduced, in a cause–effect mode, the network identifies the existing 
relationships, learns and mimics their behaviour by adjusting the strength of the 
links between the neurons (connection weights). Thus, they cannot be 
programmed but they are rather taught through case experience. As a result, soon 
after the ANN’s training, given an existing dataset, estimates can be drawn for 
another specific data input. Thus, the trained network can generalise and give 
estimates for uncertain conditions or even incomplete data [19]. The main 
disadvantage of ANNs is that an explicit determination of the parameter’s 
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weighting is not an easy task or it may not even be possible in large and complex 
network architectures. The ANN operation is based on the following: 

• Data processing occurs in a number of simple processing units (neurons), 
which have signal inputs and outputs. 

• The neurons’ bonding is made through connection links, each one of them 
having a corresponding weight that multiplies the signal. 

• Each neuron applies an activation function to the signal input to control the 
signal output.   

2.2 ANN architecture and training process 

In general, a typical ANN topology is consisted by a set of layers; the input 
layer, one or more hidden layers and the output layer, each one of them 
containing a certain number of neurons. Accordingly, each neuron is linked to 
neighbours with varying coefficients of connectivity that represent the weighting 
of these connections. Each neuron of the hidden layer(s) is interconnected to all 
others found in the input and output layers.  
     The type of ANN used in this paper are the feed-forward neural networks, 
which are the most widely used. They are commonly applied to problems where 
a set of input vectors should be corresponded to another specified set of output 
vectors. The training procedure consists of a sequential data feed into the 
network, followed by the comparative evaluation of the corresponding output 
provided by the ANN and the actual result. The network adjusts the weighting of 
the connection links in the neurons of the hidden layers in a continuous effort to 
produce the results that would best correspond to the training dataset. A 
complete pass of all the input data through the network consists a training epoch 
and usually a great number of epochs is required for the residual error to 
converge below a pre-specified threshold. A schematic illustration of a feed-
forward ANN training is given in fig. 1. 
     Feed-forward ANNs are usually trained with the backpropagation algorithm, 
also known as the generalized delta rule. In order to train a feed-forward ANN, 
corresponding sets of input (training input vectors) and output (target output  
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Figure 1: Training process of a feed-forward ANN with two hidden layers. 
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vectors) data must be presented to it. Each target output vector is the ANN’s 
desired response to the appropriate training input vector. The training algorithm 
is used to modify the connection weights so as to minimize the error between the 
ANN’s output and its desired response for all training input vectors. Generally, 
the training error is a function of the difference between the ANN’s predicted 
values and desired responses, with the connection weights as the independent 
variables. Common formulations used for the training error include the sum 
squared error (SSE) and the mean squared error (MSE).  

3 ANN in TBM performance prediction – cases studies 

The whole idea follows the ANN philosophy, that is, to analyse the experience 
gained from the tunnel boring process and to correspond it to a set of selected 
data. This cause-effect request is used in the ANN so as to identify the 
interactions between the data and to come up with the appropriate weighting of 
the parameters involved, which will finally determine the generalisation 
accuracy.  
     In order to illuminate the ability of ANNs to generalise solutions depicting the 
TBM performance, two case studies are presented. The first one deals with two 
Italian tunnels (Maen and Pieve), where the penetration rate is modelled based 
on input data relating to ground properties and machine characteristics. The 
second is related to an interstation tunnel, from the Athens metro project, where 
an ANN is trained based on a series of geotechnical data in order to be able to 
reveal possible risk prone areas where TBM operation is negatively affected by 
ground conditions. All cases are modelled individually, as the geotechnical 
environment, as well as, the particular characteristics of each TBM used are 
different. Thus, the development of separate ANNs enhances the precision and 
the efficiency of the generalisations that could be further used in order to have 
consistent prognosis for the corresponding geotechnical setting.  

3.1 Case study 1 – Italian tunnels 

Data for TBM performance analysis have been obtained from two tunnels 
(Maen, Pieve) excavated in metamorphic rocks located in the Italian Alps. The 
combined tunnel length is approximately 11.5 km, while data records exist for 
the 8.5 km. In the Maen tunnel the recordings were made at a 5 m interval, 
whereas at the Pieve tunnel data relating to the geotechnical conditions was 
gathered on a daily basis [10]. Details on the specific tunnel projects and the 
TBMs used are given in Table 1, while in Table 2 data relating to the 
characteristics of the geological formations encountered is presented. 
     Regarding the lithological types (categorical target variables) that were 
introduced in the ANN, for each tunnel, each one of them has been corresponded 
to an input neuron using the “one-of-c” coding principle. That means that the 
coding of c binary target variables (0 or 1) corresponds to the c categories. These 
new variables are also known as “dummy” variables and for each one the zero 
value is assigned to it, except for the one corresponding to the correct category, 
which is given the value one. Thus, only the neuron that corresponds to the  
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Table 1:  Construction data for the tunnels under investigation [10]. 

 Maen Pieve 
Surveyed section length (m) 1750 6400 
Total excavation time (days) 413 809 
Excavated diameter (m) 4.20 4.05 
Tunnel slope (o) 24–35 ≈0 
TBM model Wirth 340/420 E Robbins 1111-234/3 
ΤΒΜ type Open Double shield 
Number of cutters 36 27 
Cutter diameter (in) 17’’ 17’’ 
Maximum trust (kN) 7920 4602 
Boring stroke (m) 1.5 0.63 
Cutterhead rotation rate (rpm) 5.5–11 11.3 

Table 2:  Main characteristics of the geological formations [10]. 

Tunnel Rock type 
 

UCS 
(MPa) 

Tensile 
strength 
(MPa) 

Mean 
Mohs’ 

hardness

Knoop 
hardness 

(GPa) 

Cutter 
Life  

Index  

Young’s 
modulus 

(GPa) 
Serpentinite 124 — 3.6 — 30–70   — 
Metabasite 180 15 6.2 6.2 10–20 65 

Chlorite schist 17 — 2.8 — 60–90   — 
Metagabbro 138 10–12 6 5.1 15–25 39 M

ae
n 

Calc schist 75 — 3.6 — 30–70 — 
Micaschist 124–

215 
5–9 4.1 5.2–8.5 15–70 28 

Metadiorite 171–
221 

8–13 5.1 6.2–7.0 15–40 46–
100 

Meta 
quartzdiorite 

160–
210 

— 6.4 — 15 — Pi
ev

e 

Metagranite 146–
296 

0.7–7 6.6 7–10 10 24–38 

Table 3:  “One-of-c” coding used for the lithologies in the Maen tunnel case. 

SP Serpentinite 1 0 0 0 0 0 
CHLSC Chlorite schist 0 1 0 0 0 0 
TALC Talc schist 0 0 1 0 0 0 
CLS Calc schist 0 0 0 1 0 0 
MBAS Metabasite 0 0 0 0 1 0 

M
ae

n 

MG Metagabbro 0 0 0 0 0 1 
 
actual encountered lithological type, for the given data array, is activated each 
time. The “One-of-c” coding used for the lithologies in the Maen tunnel case is 
given in Table 3.According to the above, for the Maen tunnel there were 8 input 
neurons (6 for the lithological types), while for the Pieve tunnel the number of 
the input neurons were 7 (5 for the lithological types). 
     The datasets from these two tunnels have been discerned into 3 subsets using 
a uniform sampling process; the training, the testing and the validation ones. 
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From the 330 datasets for the Maen case and the 301 datasets available in the 
Pieve tunnel, about 60% was used for training, whereas the testing and validation 
subsets each amounted approximately 20% of the data. The training dataset is 
introduced to the ANN so as to properly adjust the weighting connections of the 
neurons against target output (see fig. 1), while the validation subset is used as a 
barrier to avoid data overfitting, as it stops the training when designated error 
levels are reached. Finally, the testing subset is used as the measure of evaluating 
the trained model’s efficiency. The input data of this subset are unknown to the 
model as they are used only after the completion of the training process. The 
comparison of the model’s estimates with the actual output data, documents 
ANN’s ability to generalize (predict). The ANN’s performance is assessed in 
terms of the relative error level (∆) achieved, between the actual (PRactual) and 
the predicted penetration rates (PRpredicted), following the expression: 

actual

predictedactual

PR
PRPR −

=∆         (1) 

     This criterion can provide a clear aspect regarding the ANN behaviour and 
moreover makes possible the comparison between the ANN results and other 
methods or theoretical models focusing on advance rate prediction. 
     In both cases, the optimal results were obtained by utilizing two hidden 
layers, with an increased number of neurons in the first of them. In Table 4, the 
optimum ANN architectures for the two tunnel cases are given, along with the 
mean squared errors (MSE) of the training process and the relative error levels 
(∆) for the generalisation outputs. The most efficient behaviour is achieved in the 
ANN developed for the Maen tunnel, having an 8x9x5x1 architecture. This 
particular structure type means that the ANN has a total of 4 layers, with 8 
neurons in the input level, same as the number of the parameters, two hidden 
layers with 9 and 5 neurons respectively, followed by 1 neuron in the output 
layer that eventually generates the value of the penetration rate. 

Table 4:  ANN training and testing error for each examined tunnel. 

 Maen Pieve 
Optimum ANN architecture  8×9×5×1 7×6×5×1 
Training MSE 0,119 0,086 
Relative error of ANN generalisation (%) 17,9% 21,5% 

 
     Beyond the presentation of the mean values for the relative error levels it is of 
equal importance to evaluate the overall behaviour of the trained networks. This 
will assure that the ability of the ANNs to provide reliable prognosis is spread 
throughout the dataset and not only focused in particular sections. This check can 
be made with the use of fig. 2, where the actual penetration rate for the Maen 
tunnel are presented in conjunction with the ANNs’ output for all data 
incorporated in the testing subset, along with an additional bar-graph presenting 
the attained relative error. Furthermore, in fig. 3 the scatter plot between actual 
and modelled penetration rate is given. 
     All the above concur that the ANNs’ generalisations present a satisfactory 
approximation level, consistent throughout the dataset examined, and  
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Figure 2: ANN generalisation for the complete testing subset of the Maen 
tunnel. 
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Figure 3: Scatter-plot of the measured PR values against the ANNs’ 
predictions for the Maen and Pieve tunnels. 

consequently through their respective tunnel sections. They follow the changes 
experienced in the actual TBM’s penetration rate with satisfactory levels of 
accuracy and finally attain a correlation coefficient that exceeds 75% in the two 
examined case studies.  
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3.2 Case study 2 – Athens metro tunnel 

The examined tunnel is located between the Katehaki and Panormou stations. 
The geological setting is a system of low-level metamorphic sedimentary weak 
rock consisted of interbedded marly limestones, calcareous sandstones, 
siltstones, conglomerates, phyllites and schists. The formations are intensely 
thrusted, folded and faulted with a variable and erratic degree of weathering and 
alteration. This particular excavation is the longest interstation tunnel in the 
Athens Metro, until now, having a total length of 1129.36 m [20]. The surveyed 
tunnel length is approximately 1077 m, after the exclusion of the first 53 m 
(learning curve period). The area is divided in 11 control areas (segments), in 
which, data from 16 boreholes is collected and the assessment of the selected 
geological properties is made. All data have been spatially modelled so as to 
identify the properties especially within the 12m thick stratum that the tunnel is 
actually being built in, ranging, along the chainage, from the level of +120m to 
the level of +156m. The ANN’s inputs are based on data relating to the 
geological and geotechnical characteristics of the subsurface and the specific site 
conditions. Although machine characteristics (e.g. thrust, torque) are very 
important for the overall TBM performance, in the case where tunnelling is 
performed in soft rock or complex ground formations, the properties of the 
ground medium tend to be the most influential ones, as they govern the type and 
extend of possible failures. Subsequently, encountering ground conditions 
different from the TBM’s working envelope, affect the achieved tunnelling rate 
[21] and can give rise to claims. Thus, the model considers the geological setting 
to be the most dominant factor for the TBM performance, as many researchers 
have also noted [22, 8, 10], and all possible problems and downtime are a direct 
effect of the geotechnical conditions. 
     The selection of the parameters used in the model was made having in mind 
their capability to credibly represent the ground behaviour, hydrogeological 
environment and site-specific conditions [23]. These parameters are easily 
collected in the site-investigation phase and are available to all design stages of 
the project, without the need for implementing special investigation techniques. 
More specifically, these are:  

• Rock mass fracture degree as represented by RQD 
• Weathering degree of the rock mass 
• Overload factor – stability factor (N) 
• Rock mass quality represented by RMR classification 
• Uniaxial compressive strength of the rock 
• Overburden - construction depth 
• Hydrogeological conditions represented by the water-table surface relative 

to the tunnel depth 
• Rockmass permeability 

     For each segment, a corresponding value for every principal parameter is 
taken. Allocating a representative value for the parameters is accomplished by 
the spatial modelling of the parameter’s value and by the incorporation of 
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statistical distribution that characterise the parameter’s behaviour in each 
segment [30]. 
     In the next step, the data is categorised in 4 interval scale classes, from 0 to 3, 
where 0 denotes the worst case and 3 the best. The limits taken in every class are 
representative of the specific site conditions and the machine characteristics. In 
the case of the Athens metro, the tunnel is constructed in relative low depth and, 
in general, in weak rock conditions with a double shield TBM machine. The 
rating of each parameter is presented in Table 5.  

Table 5:  Rating of the parameters. 

Rockmass Fracture degree - RQD  Rockmass Weathering 
Value Class Rating  Value Class Rating 

< 10 0  Compl. Weath.-CW 0 
10-30 1  High Weath.-HW 1 
30-60 2  Med. Weath.-MW 2 
> 60 3  SW, Fresh 3 

     

Overload Factor (N)  Rock Mass Rating - RMR 
Value Class Rating  Value Class Rating 

> 5 0  < 10 0 
3-5 1  10-30 1 

1,25-3 2  30-60 2 
< 1,25 3  > 60 3 

     

UCS (ΜPa)  Overburden (m) 
Value Class Rating  Value Class Rating 

< 2 0  < 7,5 0 
2-15 1  7,5-12,5 1 

15-40 2  12,5-17,5 2 
> 40 3  > 17,5 3 

     

Water Table Surface (m)  Permeability  (m/sec) 
Value Class Rating  Value Class Rating 

> 10 0  < 10-4 0 
5-10 1  10-4-10-6 1 
0-5 2  10-6-10-8 2 
< 0 3  > 10-8 3 

 
     The limits of the proposed rating transforms the continuous data to a discrete 
probability structure, a form that is finally used as input to the model. More 
specifically, the data is introduced to the ANN as the expected values (EV) of the 
parameters (Table 6). For example, given V1, V2,…, Vn values having a respective 
probability of occurrence P1, P2,…, Pn, the expected value of the variable X, is 
estimated as:  

∑
=

⋅==
n

i
ii VPEVXE

1

][ ,    while, ∑
=

=
n

i
iP

1

1        (5) 

     The tunnelling advance rate (AR), recorded in each segment (Table 7), is also 
introduced into the ANN model. Hence, the input vector of the parameters is 
tallied to the output vector of the mean achieved advance rate, in each segment, 
expressed in m/day [21]. Note that all externally originated delays (e.g. strikes, 
maintenance, etc.) have not been taken into account.  
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Table 6:  Expected values of the parameters in each segment. 

Parameter Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Seg7 Seg8 Seg9 Seg10 Seg11 
RQD 0.13 0.88 0.90 0.64 0.72 1.37 1.62 1.26 0.55 0.66 0.74 
Rockmass 
Weathering 

2.52 2.52 2.24 1.97 1.99 1.89 1.95 1.93 1.96 1.94 1.93 

Overload Factor 1.07 0.89 1.92 1.99 2.73 2.16 2.49 2.28 2.43 2.61 2.43 
Rock Mass Rating 0.00 0.00 0.36 0.93 1.10 1.83 2.00 1.49 1.08 1.00 1.00 
UCS 0.48 0.57 0.97 1.06 1.68 1.31 1.28 1.20 1.16 1.21 1.15 
Overburden 0.42 1.00 1.17 1.97 2.86 2.35 1.16 1.45 1.13 0.99 0.88 
Water Table 
Surface 

3.00 2.32 1.71 1.00 0.23 0.02 0.94 1.40 2.17 2.40 2.75 

Permeability 1.92 1.97 1.95 1.89 1.86 1.69 1.90 1.82 1.86 1.76 1.81 

Table 7:  Tunnelling advance rate data in each one of the control segments. 

Segment Average AR (m/day) Max AR (m/day) Min AR (m/day) 
1 4.00 8.8 0.0 
2 4.54 8.8 0.0 
3 6.25 10.4 2.8 
4 4.35 13.5 0.0 
5 9.82 12.1 0.5 
6 9.09 13.7 7.3 
7 16.67 21.0 14.7 
8 11.11 18.3 4.4 
9 10.85 17.0 6.1 

10 12.50 17.3 1.6 
11 14.07 14.8 10.4 

 
     The dataset of the whole 11 segments has been divided into two subsets. The 
first one (training subset - A) is used for the ANN’s training, whereas the second 
(testing subset - B) is used for assessing the model’s generalisation capability. In 
order to ensure the ANN’s performance the testing subset is consisted by the 
most representative segments, in terms of the achieved advance rate, namely 
segments no. 2, 7 and 9, as they represent the worst, the best and an average 
case. From the various network architectures that were examined, the ANN that 
was finally selected has an 8x9x4x1 topology. The mean squared error (MSE) of 
training approximates at 1.4x10-27 and is attained after 103 training epochs. The 
results generated from the trained model were very satisfactory, as the elative 
error (∆) between the model outputs and the testing subset ranges in the region of 
6% and 8% (Table 8).  

Table 8:  ANN generalisation output and actual AR data for the testing 
subset. 

Segment ANN generalisation results Actual data Relative error 
2 4.854 4.54 0.0693 
7 17.687 16.67 0.0610 
9 9.942 10.85 -0.0837  
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4 Concluding remarks 

The utilization of artificial intelligence techniques, like the artificial neural 
networks, in TBM performance prediction can produce reliable solutions and can 
contribute in the efforts of their better understanding. This has been the case in 
the projects analysed in the paper, where the developed networks could 
efficiently and consistently generalise the behaviour of the three TBMs in their 
respective geotechnical environment.  
     The final remarks can be drawn:  

• The use of ANN can provide an easy and user friendly modelling 
environment with enhanced capabilities. 

• Once trained, the ANN can become an efficient tool for the prediction of 
the TBM’s performance. It is a very flexible system and its feed with 
updated construction data could improve its accuracy and expand its 
applicability limitations. 

• In terms of identification risk prone areas the use of investigation data in 
the ANN model could facilitate in the planning phase of tunnels, in 
selecting tunnel alignment, to the selection of TBM characteristics or even 
in selecting the most appropriate ground improvement technique. 

     As a final point, it should be noted that data and case records from projects 
already constructed could be gathered in a extensive database covering all 
aspects of physical, geological, geotechnical, as well as TBM and site specific 
characteristics. This could be an important first step to have a “universal” ANN 
development, which could integrate all past experience so as to generalise 
solutions and provide answers to all critical issues. 
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