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Abstract 

In big cities underground spaces are built up for subways, underground parking 
and tunnels, etc. These rooms are threatened by terrorist attacks and not only 
human lives can be lost but also extensive material damage can be expected. This 
is why it is of great importance to predict dynamic impacts of explosives, which 
can then be transformed to static statistically evaluated loading. In this paper the 
impact of explosion and air strike wave is formulated and solved. Gas dynamics 
and dynamic response of soil with process of dissipation of air-strike energy are 
considered. This means that some part of this energy is transferred into structures 
and soil mass. It appears that for contact explosions on the soil surface this part 
can be up to 30% of the total explosion energy (in soft soils). The variables to be 
calculated are mass density of gas, the velocity of movements and the internal 
energy. The latter covers the influence of the gas pressure, being given for the 
adiabatic state. The air is linearly related to the internal energy of a unit mass of 
the gas, and the density, while in the neighborhood of the source of explosion the 
pressure changes nonlinearly with respect to the gas density. Time dependent 
finite element solution is compared with results published in Lucy, L.B. (1977). 
A numerical approach to testing of the fission hypothesis. Astron. J.  82, 1013.  
Keywords: underground parking, striking wave due to explosion, time 
development of gas pressure, impact load. 

1 Introduction 

Numerical simulation of gas explosion is very particular as the system of 
equations describing the process are nonlinear and of the first order. Moreover, 

 © 2008 WIT PressWIT Transactions on the Built Environment, Vol 102,
 www.witpress.com, ISSN 1743-3509 (on-line) 

Underground Spaces I  11

doi:10.2495/US080021



movement of interfacial boundary between subdomain simulating neighborhood 
of explosion and the virgin air (gas) moves according to the current situation. 
Consequently, large movements are expected. In order to describe such 
displacements of the gas couple of numerical approaches exists. One of the most 
suiting appears smooth hydrodynamics particle method (SHP), which was 
historically developed for astrophysical purposes, [1, 2]. The inherent benefit of 
the SHP formulation consists in transformation of partial differential equations to 
a system of linear algebraic using regularization. This transformation is, among 
others, suitable for parallel computations. Recently, SHP has grown into a 
successful and respected numerical tool. In particular, this method does not differ 
between 3D, 2D and 1D problems, as the problems defined in higher order 
spaces can be simulated as easy as that in 1D. An excellent review of the 
advantages and recent progress in SHP can be found in [3, 4]. Some problems 
occur when geometrical boundary conditions should be involved. Authors of [5] 
proposed the ghost particle method, in which some particles are located outside 
the domain. Heat conduction problem is solved in [6], where Taylor series 
expansion approximates the regularization kernels.  
     This paper partly starts with ideas of Veselovsky and Kurepin [7], where the 
problem of explosion in underground parking is solved. More detailed analysis is 
submitted in [8], where two-dimensional problems of gas dynamics are 
comprehensively discussed. The general approach for hydrodynamic processes 
involving strike waves and high temperature can be found in [9]. This 
information is collected into a formulation of loading acting against fixed walls 
of underground parking. The solution of the problem is done in terms of SHP.   

2 Methodology of load calculation  

The general problem of definition of loading on structures due to explosion and 
air strike waves is a complicated topic of solid mechanics. It covers a combined 
solution of gas-dynamics, dynamics of soil and building structures involving 
processes of dissipation of air-strike energy. That means that some part of this 
energy is transferred to structures and soil massive. For contact explosions on 
soil surfaces this part can be up to 30% of explosion energy (on soft soils). But in 
this case with lifted charge (center of explosion) the problem can be formulated 
in a simpler way. 
     Definition of the load will be split into two steps, which are based on gas 
dynamical calculation. We do not examine processes of transfer of air strike 
wave energy to soil and structures (parking columns, ceiling, ground, and side 
walls) and do not contemplate their movements into calculation, i.e. the 
boundaries of the air space are stiff. 
     In the first step we calculate the beginning stage of the process of impacts of 
explosion and spread out of the air strike wave until the moment of contact with 
the structures. 
     Calculation of strike wave parameters at the beginning stage is base on 
numerical calculation of one dimension equations of gas dynamic. Distribution 
of density )(rρ , velocity )(ru  and internal energy )(rε  ( r is the radius or 
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distance from the origin, which is centered at the point of explosion) at the 
moment of beginning of the interaction of the air strike wave with nearest 
structures used for calculation of spread out and various interactions among air 
strike waves are incorporated in the interfacial conditions with the second stage. 
     In the second step processes of interaction of the air strike waves with 
structures are studies. Strike wave parameters appearing in the second step are 
computed from equations of three-dimensional gas dynamic.  

3 Equations of motion, calculated parameters, quantities and 
their dimensions  

Mathematical modeling of the air movements is base on the solution of equations 
of gas dynamics, which for three-dimensional problem in Cartesian system of 
coordinates are listed as: 
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where: 
x, y, z   Cartesian coordinates [m] 

zyx uuu ,,   components of the vectors of velocity U, [m/msec] 

2222
zyx uuuU ++=  norm of the vector of velocity  

),,,( tzyxρρ =   density of gas [kg/ 3m ]  
),,,( tzyxpp =   pressure of gas  [MPa] 

]2/)([ 222
zyx uuue ++−= ερ   full energy of a unit of mass of the gas, [MPa] 

),,,( tzyxεε =  potential energy [ 22 ms/m ] 

)(
2
1 222

zyx uuu ++  kinetic energy [ 22 ms/m ] 

     Equation describing explosion of TNT charge can be recorded as  
p = (γ - 1)ρε,                                                      (6) 

where γ is the exponent of adiabatic process. For the air γ = 1.4, in case of 
explosion the exponent of adiabatic process becomes density dependent, i.e. γ = 
γ(ρ). Exponent of adiabatic process γ(ρ) can be calculated in the following way 
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- γ = 3        if ρ > 440 kg/ 3m ; 
- γ = 1.3     if  ρ < 50 kg/ 3m ; 
- γ = γ(ρ)    if  50 3m/kg  440≤≤ ρ  -    linear interpolation 
can be applied (monotonic and smooth dependence on density ρ is assumed). 
     Using matrix notation,  
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the above equations can be recorded in a simpler form as 0a b c .
t x y z
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     If the formulation possesses certain kind of symmetry three dimensional 
equations can be transformed into one dimensional equations of the form: 
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where r is the space coordinate, v is a sign of symmetry (v = 1 - plane, 2 - 
cylindrical, 3 - spherical symmetry). In case of cylindrical symmetry axial 
coordinate z is not considered in the above formulas. The nonlinear equations 
are solved by the method of Godunov et al. [8] using special linearization of the 
above equations.   

4 Regularization of functions and their derivatives 

The concept behind SHP is based on an interpolation scheme. From 
mathematical calculus it is well known, [7], that for each generalized function 
f defined on a domain nRV ⊂ with boundary S  there exists a positive ε  and a 

finite cover NiVN
i ,...,1,}{ 1 =⊂=Ω (for each point Vx∈  there is an index 

Ni ,...,1∈ so that ix Ω∈ ) with measure of εΩ <i  so that on iΩ  there exists 

function )(Ωωε
∞∈Ci , supp i

i Ωωε ∈  (sometimes called cap function) which 
regularize the function f in such a way that f can be expressed as 
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and the left hand side of the latter relation is called the regularization, if εω* is 
the convolution. Recall some basic properties of the regularization: the volume 
of each cap function is unity, is equal to one. If the function f is uniform (equal 
to one) and infinity→ε the regularization turns to be density of the function f , 

for example density of probability. If 0→ε the kernel i
εω  turns to be the Dirac 

function. For each positive ε  the regularization (kernel, cap function) i
εω  can be 

created infinitely differentiable (for definition of types of cap functions, see [7], 
for example).  
     Since different cap functions should be created for different iΩ , the above 

definition becomes inconvenient. In order to improve this put εε ωω ≡i and the 
shape of iΩ remains same for all i , the area of a circle in 2D or the volume of a 
sphere, for example.  Now inside of the domain V select a set of points 

Nii ,...,1, =x , ix is centered at iΩ and a new function F  is defined as 
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which is formally similar to relation (1), so that it fulfils basic properties above 
mentioned. Since the former assumptions take place the function F cannot be 
expected to be equal to f any longer, but a special case: 0→ε in the sense of 
definition of the Dirac function.  
     In our case 2D problem is considered and degrees of freedom are 
concentrated at nodes Niii ,...,1, =∈Ωx , iΩ  are considered as areas of the 
circles in which ix is centered. In the approximation, the smoothed (regularized) 
function F for any physical quantity f is identified with the original function, 
i.e. fF ≡ . Moreover, the kernel εω is simplifies for real calculations and the 
simplification is denoted as εW . Introducing this to (2) and setting 

)( ii ff x= gives: 
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     Equation (3) is the kernel representation to average functional distribution. In 
our next considerations additional properties of εW will be required: 
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     The last property follows from the fact that the order of differential equations, 
which are to be studied, is two, and so is the required regularity (continuity).  
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     Using integration by parts, from the boundary conditions on iΩ∂  it 
immediately follows that  
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εε 0d)(d)( ξξxξξx ii WW                       (13) 

     For the sake of simplicity the approximation of the kernel εW  is represented 
by 
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     If we consider volume (area, interval) of an element
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the mass of the element and iρ is the density, using rectangular rule of evaluation 
of integrals yields: 
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5 Calculation schemes 

Typical explosive scheme of three dimensional problem is considered in this 
section. It starts with the position of the charge near the neighboring side walls. 
This case is depicted in Figs. 1, where in the left picture view of the situation and 
in the right picture the plot of the situation is seen. The ball centered at the 
charge position with radius Rc describes the domains of charge in the picture.  
     The charge position as well as the side walls, ground and ceiling are 
imbedded in Cartesian coordinates 0xyz, where the plane 0xy is the ground and z 
is upwards oriented. In both cases the ground is characterized by the plane 0=z  
and the ceiling is the plane 3=z . The length dimensions are measured in meters. 
Center of the charge possesses the coordinates (0.5 + Rc, 0.5 + Rc, 0.5 + Rc) in 
the first case and in the second case vertical coordinate is 0.5 + Rc, while the 
other coordinates are zero. Values of the radii of charge and its mass q are 
introduced in Table 1 for the density of TNT =TNTρ 3kg/m   1620 . 
     In the first stage of definition of loads numerical solution of the problem with 
the air explosion charges of mass q = 50 kg and q = 100 kg TNT till the front r0 = 
0.5 + Rc. 
     Characterization of the charge is done by definition of mass and energy inside 
of the domain of charge. Density of TNT is considered as 1620 kg/m3.  
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Figure 1: Scheme for the charge position near the sidewalls. 

Table 1:  Dependency of the radius Rc on the power q . 

q, kg Rc, m 
50 0.245 

100 0.195 

Table 2:  Remaining pressure fp∆ . 

q, kg m,fR  2kgs/cm,fp∆  

50 0.695 131 
100 0.745 156.7 

6 Results 

Results of calculation – beginning distribution of density ρ(r), speed u(r) and 
pressure p(r) behind the air strike wave are shown in Figs. 2–7 for the case 
depicted in Fig. 1. In the graphs of density distribution ρ(r) drop of this function 
behind the air strike wave is seen. Density disconnection is equal to contact drop 
that divides influences of charge and the air compressed by the air strike wave. 
The boundary conditions on the interface of the air and the structures of the 
parking are prescribed in such a way that fully reflexive surfaces of the structures 
are considered.  
     In Table 2 the remaining pressure fp∆ on the front of air strike wave at the 
beginning of interaction of the air strike wave and the structure for the first case 
of geometry, see Fig. 1.   
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Figure 2: Initial density for q = 
50. 

Figure 3: Initial velocity for q 
= 50. 

   

Figure 4: Initial pressure for q 
= 50. 

Figure 5: Initial density for q = 
100. 

 

     
Figure 6: Initial velocity for q = 100.       Figure 7: Initial pressure for q = 100. 
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7 Conclusions 

In this paper movements of gas due to explosion in an underground parking are 
studied. The main purpose of this paper is to discover the loading developed 
against the side walls, ground and ceiling of the parking room. The SHP method 
is used as a numerical tool, solving the set of equations describing the movement 
process of gas (air).  Density disconnection appears at the walls due to difference 
in influences of the charge and the air, which is compressed by the air strike 
wave. In the neighborhood of the charge supersonic velocity is considered, 
which induces subsonic velocity in the air.  
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