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Abstract 

This work tries to represent the general static load-carrying capacity of four-
contact-point slewing bearings under general loading. This representation is 
based on a generalization of Sjoväll and Rumbarger’s equations and provides an 
acceptance surface in the load space. This acceptance surface provides the key 
set of acceptance curves for the design and selection of bearings.  
Keywords: four contact point slewing bearing, acceptance surface, bearing 
selection, static load capacity. 

1 Introduction 

Slewing bearings are large-sized bearings with many applications, such as in 
wind turbine generators, tower cranes vertical lathe tables... The loads acting on 
these bearings usually contain axial and radial forces, as well as tilting moments 
(see Figure 1). In the most unfavourable load case, the radial force is 
perpendicular to the resultant of the tilting moments. Several bearing 
manufacturers provide acceptance curves that allow one to determine whether or 
not a bearing is acceptable for a given equivalent load, calculated as a 
combination of the axial and radial loads. By means of a moment–axial-force 
diagram, this equivalent load allows a designer to obtain the maximum allowable 
tilting moment that the bearing can bear. This is illustrated in Figure 2. There are 
some variations in the form and limits of the diagram shown in Figure 2. 
depending on the manufacturers having experimented with or assessed the 
bearings themselves, or having simply copied other manufacturers’ data. 
Anyhow, there is always a certain ambiguity and a lack of a clear criterion in the  
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definition of the equivalent load. The objective of this work is the development 
of a procedure which defines a surface by the limiting values of the loads FA, FR 
and M for four-contact-point slewing bearings. This representation can be used 
directly to determine whether or not a given load combination is acceptable. 
 

 

Figure 1: Loads acting on a slewing bearing. 

 

Figure 2: Moment–axial-force diagram for a four-contact-point slewing 
bearing. 

     There have been some previous publications where concepts relevant to the 
assessment of the static load-carrying capacity of four-contact-point slewing 
bearings have been examined [1-5]. All of the above papers propose a 
generalization of the equations obtained by Jones [6], in which the load 
distribution is worked out from the known external loads, taking account of the 
variation in contact angle with the loading conditions. 
     This work has a different focus, consisting in directly calculating the load 
combinations that result in static failure (as defined in the ISO standard [7]) of 
the most loaded element. This allows one to obtain a three-dimensional 
acceptance condition in the form of a surface inequation. The designer can use 
this acceptance surface as a straightforward way to select a bearing 
appropriately. This approach is based on the calculations of Sjoväll [8] for 
combinations of axial and radial loads and of Rumbarger [9] for combinations of 
axial and moment loads. These calculations assume zero clearance in the contact, 
and rigid rings. These assumptions are also made in the current paper. The axial 
load-carrying capacity is used to normalize the results and can be obtained from 
standards [7].  
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2 The three-dimensional acceptance condition 

As in [8] and [9], the first step consists on arranging a geometrical interference 
model, and then, taking the interference field as deformation field, equations that 
reflect the equilibrium of the forces and moments are worked out. Finally, the 
equilibrium equations are rewritten to provide an acceptance inequation. It has 
been assumed that only the inner ring can be displaced, while the outer one and 
the balls remain fixed. The deformation field can be expressed as follows, 
measured as displacements perpendicular to raceways 1 and 2: 
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where ψ is the angular location over the rings, α the contact angle, d is the 
contact diameter and δa, δr, θ  are the axial radial and angular displacements of 
the inner ring with respect the outer one. Superscript 1 refers to the upper 
raceway and superscript 2 refers to the lower one. 
     We define auxiliary variables A, R and M as follows: 
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     Using equation (2), equation (1) can be written as: 
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     The maximum and minimum values of the deformation fields occur when ψ = 
0 and ψ = π, so that 
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     If we rewrite equations (12) in terms of the values of the deformation for ψ = 0 
and ψ = π: 
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     According with expressions developed in [8] and [9], and after some 
mathematical adaptations, action equilibrium equations can be written as shown 
below, where contributions of raceways 1 and 2 are considered. 
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where 
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and 
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3 Results and discussion 

The maximum load is expressed as a function of the axial load-carrying capacity. 
This is done in order to represent graphically the values of FA, FR and M that 
cause permanent deformation in the most loaded ball, as detailed in [7]. We 
have: 
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     When we substitute equation (9) into equation (6), we obtain: 
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which can be seen as the coordinates of a point in a 3D diagram, with axes 
FA/C0a, (FR/C0a) tan α and (M/d)/C0a. When we study different deformation fields 
defined by (A, R, M) according to equation (4) and solve equation (6) for each 
case, the final result is a cloud of points that define the acceptance surface. 
     It is difficult to represent the acceptance surface graphically, since it must be 
mapped with the parametric coordinates (A, R, M); each set of parametric 
coordinates results in another set in the coordinate system (FA/C0a, FR tan α/C0a, 
(M/d)/C0a). A MAPLE application has been developed to assess the cloud of 
points with various levels of accuracy N in order to map the surface, as follows: 
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     This is done in such a way that all possible combinations are chosen, resulting 
in (2N + 1)3 points. Figure 3 shows a rendered triangulation of the cloud of 
points for N = 20 (68921 points). 
 

 

Figure 3: Moment–axial-force diagram for a four-contact-point. 

     The validity of the method has been verified by, for instance, checking the 
intersection of the surface with the coordinate axes. In fact, as can be found using 
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the results in [10] and [11] applied to a four-contact-point slewing bearing, the 
limiting values of the axial and radial forces and tilting moment should be 
determined by 
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     These values match up with the ones given by the method developed in this 
paper. However, if the same comparison is done with intersection curves with 
the coordinate planes (as in [8] and [9]) it must be pointed out that there are 
some slight differences. In this sense, the method developed in this paper is more 
complete than those presented in [8] and [9], and it should not be seen as a 
superposition of the results of those methods. The reason is that in [8], only 
axial- and radial-force equilibrium is assumed, whereas the moment generated by 
axial non-uniform loading is not balanced, and in [9], only axial-force and 
tilting-moment equilibrium is assumed, whereas the axially generated radial 
force is not balanced. 

4 Conclusions and future work 

In this work a procedure for the assessment of the limiting values of the loads 
acting on a four-contact-point slewing bearing has been presented. The loads are 
an axial force, a tilting moment, and a radial force perpendicular to that moment. 
These limiting values are obtained by considering the equilibrium of the forces 
and moments in the inner ring, and then equating the maximum load to the value 
obtained from the axial load-carrying capacity. This procedure results in a 
surface expressed as a cloud of points in a three-dimensional coordinate system 
whose axes are the normalized loads. A designer can use this acceptance surface 
to provide a straightforward way to select a bearing.  
     Further work remains to be done, using for example multiparametric NURBS 
surfaces to assess equivalent loads in order to systematically obtain curves for 
the selection of bearings.  
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