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Abstract 

A spectrum-based method is proposed for predicting peak responses of a SDOF 
system that pounds against adjacent rigid structure(s) during an earthquake. 
Pounding is considered to occur on either one side or two sides of the system. 
The contact element is simulated by the Kelvin body combining a spring and a 
dashpot in parallel. Based on free vibration and harmonic vibration both 
involving pounding, the equivalent period and damping of the SDOF system are 
obtained and used to predict peak displacements as well as collision force. The 
accuracy of the proposed method is demonstrated via extensive numerical 
experiments over a variety of combinations of system properties, contact element 
properties, separation distances, and earthquakes. 
Keywords:  relative displacement, structural pounding, viscoelastic contact 
element, coefficient of restitution, equivalent period, equivalent damping. 

1 Introduction 

Pounding between buildings occurs when separation distance is insufficient to 
accommodate the peak relative displacement between them [1, 2]. The collision 
between two buildings is typically simulated by contact element, which becomes 
active only when contact is detected. Several types of contact element such as 
linear/nonlinear spring element, and linear/nonlinear viscoelastic element have 
been used for pounding simulation [3-5]. The use of numerical methods for this 
nonlinear dynamic problem poses many difficulties and requires time-consuming 
efforts. Moreover, using numerical methods at the beginning of design may not 
be an efficient choice because of the nature of design process, where repetitive 
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analyses using different ground motions are required. Therefore, an alternative 
method utilizing response spectra could be more suitable for practical use. The 
spectrum-based method would also make it possible to clarify the relationship 
among structural properties, earthquake characteristics, and peak responses.  
     The objective of our research, therefore, is to propose simplified methods for 
estimating peak responses of buildings subjected to seismic pounding. This paper 
will concentrate on the fundamental pounding problem, where a SDOF system 
pounds against adjacent rigid structure(s) located on its side(s) and viscoelastic 
contact element is used for pounding simulation. Equivalent period and damping 
are derived, then combined with elastic response spectra to get peak responses. 
The proposed method is simple but accurate enough for practical application.  

2 Modelling of pounding problem 

Consider a SDOF system with mass m, stiffness k, and viscous damping 
coefficient c. It pounds against adjacent rigid wall(s) when absolute displacement 
|u(t)| exceeds either separation distance s+ (> 0) on the right side, or s− (> 0) on 
the left side. Viscoelastic contact elements (fig. 1a) are characterized as parallel 
combination of linear spring stiffness ( +

sk  or −
sk ) and dashpot ( +

sc or −
sc ). 

 

Figure 1: Pounding of a SDOF system against rigid structures: (a) Modeling, 
(b) Force-displacement relations. 

     The system is considered to be in state 1 when not in contact and state 2 when 
in contact with the wall. Elastic force Fe and damping force Fd are governed by 
displacement u (fig. 1b) and velocity u  as follows: 
  
 ):1state(, +− ≤≤−== susucFukF de  (1a,b) 
 ):2state()(,)( ++++ >+=−+= suuccFsukukF sdse  (1c,d) 
 ):2state()(,)( −−−− −<+=++= suuccFsukukF sdse  (1e,f) 
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Clearly, stiffness and damping are added by contact element when the state 
changes from 1 to 2, hereby we define the stiffness increase ratio κ + and κ − , as 
well as damping increase ratio ζ + and ζ −, eqns. (2) and (3). 
 
 cckk ss /1,/1 ++++ +=+= ζκ   (2a,b) 
 cckk ss /1,/1 −−−− +=+= ζκ   (3a,b) 
 
Let call vibration frequency in state 1 as no-pounding vibration frequency ωnp, 
and those at state 2 as pounding vibration frequencies −+

pdpd ωω  and . The vibration 
frequencies and damping ratios are related as follows:  
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Figure 2: Time history of undamped free vibration. 

3 Free vibration with pounding 

3.1 Time history of undamped free vibration pounding response 

Considering initial condition 0=u and maxuu = , where +> su npωmax and −snpω  
so that pounding will occur on both sides. By a similar process [6], we can obtain  
a) 0 ≤ t ≤ t1 (state 1, see also fig. 2): 
 tutu npnp ωω sin)/()( max= ,  npnp ust ωω /)}/({sin max

1
1

+−=  (6a,b) 
 
b) t1 < t < 2t2 – t1 (state 2):  
 )(sin}/)({)}(cos1){/()( 111 tttuttsstu pdpdpd −+−+−+= ++++++ ωωωκ  (7a) 
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 }1)//{(tan)( 2
max

11
12 −+= ++−−+ sutt npnp ωκκω  (7b) 

 

c) 2t2 – t1 ≤ t ≤ t3 (state 1): 
 )2(sin)/()( 2max ttutu npnp −−= ωω ,  2max

1
3 2/)}/({sin tust npnp += −− ωω  (8a,b) 

 

d) t3 < t < 2t4 − t3 (state 2): 
 )(sin}/)({)}(cos1){/()( 333 tttuttsstu pdpdpd −+−+−−−= −−−−−− ωωωκ  (9a) 

 }1)//{(tan)( 2
max

11
34 −+= +−−−− sutt npnp ωκκω  (9b) 

 

For one-side pounding at right, negative state 2 displacement, eqn. (9a), does not 
exist. Thus, time t4 is given by du(t)/dt = 0 of eqn. (8a), and t4 = 2t2 + Tnp/4 
instead of eqn. (9b) is obtained (fig. 2). In contrast, for one-side pounding at left, 
time t2 is given by du(t)/dt = 0 of eqn. (6a), and t2 = Tnp /4 instead of eqn. (7b). 

3.2 Peak displacement and equivalent vibration period 

We defined (fig. 2) u+ and u− as absolute values of positive and negative peak 
displacements, respectively. u+ can be expressed with maxu by substituting eqn. 
(7b) into eqn. (7a), similarly for u− by substituting eqn. (9b) into eqn. (9a), then 
 

 



 +−+−= ++++++ κωκκ /})//(1/1{/11 2

max susu np  (10a) 
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max susu np   (10b) 

Rewriting eqn. (10): 
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From eqns. (7b) and (9b), durations of responses per cycle showing positive and 
negative displacements ∆t+ (= 2t2 ) and ∆t− (=2(t4 − 2t2)) are obtained as follows: 
 





 −+=∆ ++−−++−+ }1)]/({[tan)()/(sin)/( 2

max
15.0

max
1 suusTt npnpnp ωκκωπ  (12a) 





 −+=∆ −−−−−−−− }1)]/({[tan)()/(sin)/( 2

max
15.0

max
1 suusTt npnpnp ωκκωπ  (12b) 

 

where Tnp is no-pounding period. Eqn. (12) indicates that ∆t+, ∆t− depend on 
maxu , s+, and s−. Thus, equivalent vibration period Teq can be given as follows: 

 

 −+ ∆+∆= ttTeq    (two-side pounding) (13) 
 

In case of one-side pounding at right, for example, u+ is given by eqn. (10a), and 
since pounding does not occur at left: npuu ω/max=− by setting κ − = 1 in eqn. 
(10b). Duration ∆t+ and ∆t− are obtained in an analogous manner, therefore 
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Figure 3: Steady state response of two-side pounding: (a) time history, (b) 
Fd-u relationship, (c) calculation of dissipated energy. 

4 Harmonic vibration with pounding 

4.1 Equivalent damping ratio 

The equivalent damping ratio ξeq is normally based on the steady state response 
of a system to harmonic force at exciting frequency equal to the natural 
frequency of the system. To apply for current problem, the equivalent period Teq 
derived in previous section is used as natural period of the pounding system, and 
the equation of motion under considering harmonic force can be written as  
 
 ( ) ( ) )/2sin()()( 0 eqged TtumtuFtuFum π−=++             (15) 
 
After a number of numerical checks (fig. 3a, b), the steady state u(t) in a cycle of 
vibration is approximated by two distinct half-sinusoidal curves with vibration 
frequencies (π/∆t+) and (π/∆t–) for each side (fig. 3a), respectively. 
Consequently, energy +

DE  dissipated while 0)( >tu can be calculated as the 
summation of dissipated energies by system damping c (area Ac) and contact 
dashpot +

sc  (area Acs), see fig. 3c. Similarly for dissipated energy −
DE  while 

0)( <tu  and we obtain 
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The strain energies ES on each side are assumed to be equal and calculated using 
the stiffness and peak displacements (fig. 1b) 
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Based on these, 
 −+ ∆+∆= ξξξeq    (two-side pounding) (18) 

 )4/( SD EE πξ ++ =∆ ,  )4/( SD EE πξ −− =∆  (19a,b) 
 

If there is only one-side pounding at right, set s − = u− in eqn. (16b) and use ∆t− = 
0.5Tnp. Similarly for one-side pounding at left, eqn. (18) becomes 
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4.2 Numerical experiment for harmonic vibration 

Numerical experiment is conducted using ground acceleration )/2sin(0 Ttug π , 
where gug 6.00 =  and T is varied. We consider a system having Tnp = 1s and ξnp 
= 0.02, thus peak steady state displacement of no-pounding system at resonant 
excitation (T = Tnp) is 72.32/ 2

0 == npnpgnp uu ξω m. Both two-side pounding and 
one-side pounding are considered; for two-side pounding, separation distance is 
set equal on both sides, s+ = s− = s. Separation distances s = 0, 0.5, 1, and 4 m are 
assumed. Contact element stiffness is selected such that κ = 4 (Tpd = 0.5s); 
dashpot cs is varied to have 6 values of ξpd = 0.01~0.52 (fig. 4), respective values 
of coefficient of restitution e [7] are also shown in fig. 4.  
     Fig. 4 shows steady state displacement spectra (solid line) obtained by 
numerical integration. For the case of s = 4, pounding is avoided and all the 
spectrum curves are identical. For the case of s = 0, the system with two-side 
pounding (fig. 4a) vibrates with Tpd and ξpd; while the system with one-side 
pounding (fig. 4b), in addition to the peak of harmonic response, the peak of so-
called subharmonic response appears at twice the resonant frequency of the 
pounding system [3]. However, the subharmonic response does not seem to have 
any significant effect. 

4.3 Estimation of peak displacement 

The peak displacements can be estimated by using eqn. (10) once maxu is known. 
It is assumed that maxu represents the peak velocity of an equivalent linear 
system having Teq and ξeq, but as shown in eqns. 13 and 18, Teq and ξeq depend 
on maxu . Thus, iterations for getting maxu is required and summarized below: 
After setting initial values npeq TT =)1( and npeq ξξ =)1( , the i-th iteration includes 

1) Calculate )(
max
iu  using eqn. 21 for harmonic excitation, and u+ and u− (eqn. 10). 

2) Get )1( +i
eqT  and )1( +i

eqξ  (eqns. 13 and 18). 

3) Calculate again )1(
max
+iu  (eqn. 21), and if )1(

max
+iu ≈ )(

max
iu , the iteration ends. 
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4) Use 2/)( )(
max

)1(
max

)1(
max

iii uuu += ++ and go to step 1). 

where ( ) ( )2)()(222)(
0

)(
max 2)(/ ωωξωωω i

eq
i

eq
i

eqg
i uu +−=       (21) 

 

In step 4), we use midpoint of the limits after each iteration so the bounds 
containing exact value of maxu decrease by factor of two. Thus it converges fast 
and normally takes about 3 to 4 iterations if the tolerance limit is set to 1%. 
     The accuracy of the method for harmonic excitation is verified as follows: 

maxu  is calculated with eqn. (11) using u+ and u− obtained in (4.2) instead of 
using eqn. (21). Then steps 2), 3), and 1) are followed and the results without 
further iterations are compared with the time history analysis results. Estimated 
spectra are plotted using broken lines also in fig. 4; the estimated curves match 
very well with those from numerical analysis. The method can not predict 
subharmonic response that occurs in one-side pounding. Since such subharmonic 
response shows no relevant effect compared with harmonic response and it does 
not appear in MDOF system, its effect will not be considered again. 
 

Figure 4: Displacement spectra of two-side and one-side pounding. 

5 Estimation of seismic pounding responses 

5.1 Spectrum-based estimation of peak seismic responses 

For pounding caused by seismic loading, however, instead of eqn. (21), maxu is 
estimated by using elastic design velocity spectrum Spv as follows 
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 ( ) ( )npeqpveqeqpv TSDTSu ξξ ξ ,,max ⋅== ,  )1/()1( enpD αξαξξ ++=  (22a,b) 
 
in above expressions, Dξ = scaling factor for taking into account the effect of 
damping, and α depends on each particular earthquake (table 2).  
Peak collision force is approximated by using the SRSS rule for peak forces 
developed in contact element’s spring and dashpot (fig. 1). Accordingly,  
 ])/(1[])/([)]([ 222 +++++++++ −∆+−= usutcsukF ssc π  (23a) 

 ])/(1[])/([)]([ 222 −−−−−−−−− −∆+−= usutcsukF ssc π  (23b) 

5.2 Validation of the method 

The validation study includes both one-side pounding and two-side pounding 
that considers same contact elements on both sides. For each pounding incident, 
it uses 8 systems with different Tnp (table 1) but having same ξnp = 0.02. For each 
system, separation distances are varied through 10 values of separation ratios 
s/unp = 0.1 to 1.0 at an increment of 0.1. Two different cases of contact element 
stiffness are considered: in stiff contact case the contact element is much stiffer 
than the system’s stiffness; while in soft contact case the contact element is 
assumed quite flexible such that κ = 4 for all systems (table 1). For each analysis 
case above, dashpot of contact element is chosen to simulate three values of 
coefficient of restitution, e = 0.9, 0.6 and 0.2. 
 

Figure 5: Spectra of artificial earthquakes and the design spectrum. 

 
 
 
 
 
 
 
 
 
 

Table 2: Values of α. 
 

Earthquake α  
Hachinohe EW 75 
JMA Kobe NS 25 

Tohoku NS 75 
El Centro NS 55 
Taft N111E 75 

BCJ-L2 75 

Table 1:  Systems used in validation study. 
 

 System 1 2 3 4 5 6 7 8 
 Tnp (s) 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 

Tpd (s) 0.1 0.16 0.2 0.2 0.2 0.24 0.28 0.32Stiff 
Contact κ 16 25 36 64 100 100 100 100

Tpd (s) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Soft 
Contact κ 4 4 4 4 4 4 4 4 
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     For time-history analysis, 6 artificial earthquakes (table 2) are considered in 
both positive and negative directions. These level 2 earthquakes have similar 
spectrum characteristics and similar to the elastic design spectrum. Thus, results 
obtained from numerical analysis can be used for investigating the accuracy of 
the proposed method. Fig. 5 shows the pseudo velocity spectra of these 
earthquakes (2% damping ratio), and the design spectrum having Spv = 140cm/s 
in the constant velocity domain. 
     The accuracy of the proposed method in estimating peak displacement is 
demonstrated through ratios between estimated and respective time-history 
analysis results. The graphs in fig. 6 show the mean and standard deviation of 
these ratios vs. separation ratios, for each value of coefficient of restitution e. For 
one-side pounding, fig. 6a shows very close results between time-history 
analysis and estimation for u+, ratios for u− are slightly scattered at s/unp small 
but most of them still distributes near 1.0. Accuracy of the method does not 
significantly change between soft and stiff contact case. Similarly to results of 
one-side pounding, the proposed method predicts very well peak displacement of 
symmetric two-side pounding (fig. 6b). 

Figure 6: Accuracy of estimated peak displacement. 

     Peak collision force is normalized with the respective peak shear force that 
would develop in the system if pounding did not occur (i.e. k⋅unp). Such 
normalized forces estimated by the proposed method are plotted against the 
accurate time-history analysis result in fig. 7, where each data point corresponds 
to one analysis case. These graphs show good estimation, especially for 
pounding with small coefficient of restitution and soft contact element. This can 
be understood because contact element with large damping can effectively 
dissipate energy, while soft contact element reduces collision force. 

6 Conclusions 

This paper proposed the new spectrum-based estimation method for peak 
structural responses of a SDOF system pounding against rigid structures. The 
pounding phenomenon is modeled using linear viscoelastic elements. This 
idealization is consistent with SDOF system used and appears adequate for 
studying the effects of pounding on the overall building responses. The 
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spectrum-based estimation method is based on analytical solution of free 
vibration and harmonic vibration of the system both involving pounding to 
obtain equivalent period and damping, and uses them together with elastic design 
spectrum for estimation of peak responses. Using 6 artificial earthquakes that 
resemble the elastic design spectrum, the method is validated through extensive 
numerical experiments by varying system vibration period, separation distance, 
and contact element properties. The applicability of the method is shown and the 
correlation of estimated peak responses to time-history analysis results is very 
satisfactory. 
     The proposed method will serve as a basis that will be extend for structural 
pounding between two SDOF systems, as well as pounding of MDOF systems. 
 

Figure 7: Accuracy of estimated peak collision force. 
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