@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Utilization of FMEA concept in software
lifecycle management

N. Banerjee
Isardata GmbH, D-82515 Wolfratshausen, Germany

Abstract

This paper describes how the concept of FMEA, Failure
Modes and Effects Analysis, can be utilized to improve the
reliability of the software production process resulting in
higher product quality as well as in higher productivity.
This concept has already been implemented by
ISARDATA, a small software company in Germany
specialisied in the field of software test and validation, in
several software development projects.

The paper begins with introduction of the general
principles of FMEA known from applications in various
manufacturing industries. The introduction is followed by
a brief description of the necessary adaptations of the
FMEA method for application in a software production
process.

The next section describes the essentials of planning
FMEA as an integral part of the software lifecycle
management. Since FMEA is primarily the output of
teamwork, this section defines practical guidelines for
constituting the FMEA team consisting of software
developers, testers and quality planners, and for
conducting the meetings including defintion of the FMEA
objectives of the project.

@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

220 Software Quality Management

The following section of the paper describes the main
FMEA tasks to be performed by the team. These are the
identification of:

a) the structure of the software product in terms of its
subsystems, functions, external and internal interfaces and
interdependencies;

b) the possible failure modes of the product and their
causes;

c) the effects of the failures including calculation of
gravity factors;

d) possible measures to prevent and/or correct the
failures;

e) test plans to detect such failures during the software
development phases;

f) metric for the evaluation of the FMEA results.

The next section of the paper describes how this process
can be supported by software tools.

The final section sums up the conclusions.
1 Introduction

Many industrial companies are in the process of
implementing TQM (Total Quality Management) with the
aim of ensuring, on the one hand, reliable product quality
and, on the other, low production costs as well as short
delivery times. However, it seems that this ambitious
objective can't be achieved without consequent use of
preventive quality assurance methods to anticipate
potential failures and prevent their occurence. FMEA,
Failure Modes and Effects Analysis, is such a method
frequently used in practice.

@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 221

There are two complementary types of FMEA called
CONSTRUCTIONAL FMEA and PROCESS FMEA. The
constructional FMEA is applied during the starting phase
of product development to ensure that while planning and
designing a product, foreseeable failures, their
consequences, and correctional measures have been taken
into consideration. The Process FMEA is applied during
planning of product manufacturing process to anticipate
failures inherent to production technology and to
production management.

A detailed case study of FMEA application in software
lifecycle management is not known to the author of this
paper. His own experience has shown the necessity of
carrying out for practical reasons certain modifications of
the FMEA workflow in a software production process.

Modification is required in the set-up of the FMEA team.
In the modern software production a software designer
has also to be a software developer, and vice versa, as
against clearly distinct roles of e.g. product engineer, plant
engineer and assembly plant worker in other kinds of
industrial production. The FMEA team in software
production will therefore have less actors, but several
actors will have more than one role to play. This may lead
to higher efficiency, because of the smaller size of the
team, but also to distorted output if the actors failed to
keep a fair balance between their different roles.

Modification is also required in the workflow. It is not
practicable to treat constructional FMEA and process FMEA
as two tasks to be performed sequentially at different
stages of the production, not only because, as mentioned
above, exactly the same actors are involved in both tasks,
but also because the production of software is an
incremental process beginning with the functional
specification of the product, when e.g. an integrated
software development environment supporting data
modelling, user interface design, 4GL or Object Oriented
programming is used.

@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

222 Software Quality Management

2 Introducing FMEA in software production

For an organisation introducing FMEA in software lifecycle
management for the first time, it is extremely important to
spend some extra effort at the very beginning of a project
to define the goals of FMEA and have them approved by
the steering committee of the project, or by other
equivalent or even higher authority. Especially the
management should be made aware of the following:

FMEA is no substitute for a software process
model

A software process model defines the workflow of
software production in an organisation. Without such a
workflow it is not possible to have a proper coordination
between software objects (product) and tools (process)
through the different stages of software production. FMEA
is an analysis process producing a list of potential failure
modes of each product function together with possible
correctional measures. This output as such is practically
worthless without deployment of the correctional
measures, which again depends on the quality of the
existing software process model.

FMEA is teamwork

Brain-storming is an essential function of the FMEA
process. The pooled know-how of all team members is
used to identify potential failure modes as well as the
correctional measures. However, the output of brain-
storming must be subsequently schematized. The cycle of
brain-storming followed by schematization is repeated
until for all product functions potential failure modes have
been identified, their effects on the functionality of the
product have been evaluated, and, wherever deemed
necessary, correctional measures have been defined. This
is obviously a highly synergetic process whose success
depends on strict observation of certain basic rules.

@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 223

Rule 1 An experienced moderator must conduct the
sessions!

Rule 2 The team should never consist of software
developers only! User, tester and QA manager are
useful, if not essential, team candidates!

Rule 3 Identification of weak spots in a design should
never lead to criticism of the author(s) of the
design!

Rule 4 The team should remain in office throughout the
project!

Rule 5 The FMEA meetings should take place during
regular office hours, and not during the spare time
of the team members!

The effectivity of FMEA depends on that of
existing feedback mechanism

One interesting experience made in FMEA process is that
many of the identified potential failure modes are
common to a class of software projects. They can be
generalised in terms of e.g. application domain of the
product, its operational environment, the programming
environment chosen for the production, the type of man-
machine interaction to be implemented, and so forth. The
same is also true of the accompanying correctional
measures. It is therefore obvious that by establishing
efficient feedback mechanisms in a project, or even better
in the organisation, the exploitation of past experience in
current FMEA processes will be possible. In this way the
productivity of FMEA can be raised very significantly.
There are at least three different ways which any modern
organisation should be able to use for propagating such
feedback:

@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

224 Software Quality Management

Common Database containing checklists or even more
details on failure modes etc. from past and/or current
projects.

Electronic Mail for information exchange between a
FMEA team and other experts in the organisation.

Information Seminars conducted by one or more FMEA
teams to publish the results of their work to other
members of the organisation.

3 The FMEA Process

The following brief descriptions of the FMEA tasks do not
consider the process FMEA.

Task: Definition of system model

Several documents are required as initial input for the
FMEA process. The most important of them are:

- a user- and application-oriented functional system
description;

- a high-level system design description independant of
a particular implementation technology;

- a system design description including specification of
hardware and software components and their
dependencies.

Using these documents a hierarchical system model is
created with top-down decomposition of each system
component in subsystems until all system functions
including hardware components have been described.
Complementary to this model, a model describing the
possible user-system interactions is also defined.

@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 225

These two hierarchical models together contain all
sources of potential failure modes to be dealt with in the
constructional FMEA.

Task: Identification of failure modes

The next FMEA task is to identify potential failure modes
for each object of the two hierarchical models. Failure in
this context can be defined as any deviation from the
expected system reaction. It could be caused either by a
design flaw, e.g. an essential function is missing, or by an
implementation flaw, e.g. the function has not been
properly implemented. This task should identify both
types of failure,

Example Let us suppose that one user requirement is a
function for drawing graphic objects. In this case, one
potential failure mode could be a missing UNDO function
that would allow wuser to cancel an action like e.g.
deletion/modification of an object. This would be a design
flaw. In case the function is there, there could be e.g. one
of the following failure modes caused by some kind of
implementation flaw:

Failure mode The function can't be activated.
The cause of the failure could be e.g.
- the menu item UNDO is not enabled;

Failure mode The function can be activated, but the
result is not correct.

The cause of the failure could be e.g.

- the intermediate storage of the object before the last
user action is not properly executed;

@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

226 Software Quality Management

It is needless to emphasize that the scheduling of the
FMEA process should be such that the identification of a
design flaw may take place in the early stage of the
lifecycle, in order to avoid the necessity of redesign after
implementation, which is always a costly affair.

Task: Assessment of the criticalness of each
identified failure mode

One basic principle of FMEA is to measure the criticalness
of a failure mode, and to define correctional action only if
a certain degree of criticalness has been reached. The
critical degree, or the risk priority number (RPN), is
calculated by multiplying assessment points allocated to

- failure effects (E)
- probability of failure occurence (O)

- probability of failure detection (D).

In case of software it is not always possible to assess O
and D. But it is almost always possible to assess either of
the two. Therefore, the RPN can be calculated by
multiplying E with O or D.

The failure effect E should be assessed using a scale like

e.g.
0.0 0.5 1.0
Low Moderate Serious

It is, however, necessary to have a common definition of
the terms to be used by all team members, as for instance:

Low = The function yields correct results, but handling
is cumbersome;

@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 227

Moderate = Certain options of a function are not
executable;

Serious = Unrecoverable loss of data.

Also the probability of failure occurence/detection O/D
should be assessed using a scale like e.g.

Unlikely Evens Certainty

Example In case of the failure mode UNDO can't be
activated, the RPN will be high, because the effect (E) will
be serious (loss of data) and the probability of
occurence/detection (O/D) will also be near certainty. In
such a case it is imperative to define a correctional action,

Task: Definition of correctional actions

For each failure mode having a high RPN score a list of
correctional actions are defined. Each action should have a
reference to the lifecycle stage in which it will be carried
out.

Example In case of the failure mode UNDO function is
not enabled the action could be

- Create a function to enable the menu item following a
user action modifying an object (Design/Implementation).

Task: Definition of test cases

Using the available analysis data test cases should be
defined describing the test objective, the expected result,
and the phase in which the test is to be executed.

@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

228 Software Quality Management

Example In case of the failure mode UNDO function is
not enabled, the test objective will be to verify that the
UNDO function is enabled after any user action modifying
an object. Therefore several test cases should be defined
to verify that the UNDO is enabled after

- modification of an object

- cut, copy or paste of an object

- movement of an object

- execution of the UNDO function (REDO).

Task: Definition of metrics for evaluating the
FMEA output

It is quite useful to evaluate the effectivity of FMEA with
the help of a few metrics like e.g.

- total number of correctional actions defined;

- percentage of defined correctional actions
implemented;

- total number of design corrections
defined/implemented;

- Ratio of test cases defined during FMEA to total

number of test cases.
4 Software tool support

FMEA is a dynamic process resulting in incremental
change of practically all information produced during the
meetings. It is also necessary to organise the information
in tabular forms to keep track of their interdependencies.
Practical experience has shown that the maintenance of
dynamically changing structured information 1is not
feasible without use of some kind of computerized
documentation system. Several PC-based tools for FMEA
documentation are available. They have, however, been
designed for FMEA in the manufacturing industry, and not
been adapted to the requirements of software production.

@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 229

As already mentioned above, the productivity of FMEA
can be significantly increased if it is supported by

- a common database containing checklists or even
more details on failure modes etc. from past and/or
current projects

- electronic mail facility for information exchange
between a FMEA team and other experts in the
organisation.

5 Conclusions

The aim of this paper was to show that the concept of
FMEA can be utilized to improve the reliability of the
software production process resulting in better product
quality as well as in higher productivity. The FMEA itself
is no more and no less than a methodically well-organised
analysis process. Its results, however, can not be used
effectively to improve the product and the production
process without the existence of a working software
lifecycle-process model. There are at least three aspects of
FMEA leading to improvement in product quality :

Definition of a system model The task of defining a
hierarchical model of all system functions, which is very
often neglected or not done properly in software projects,
helps all members of the FMEA team to have a clear
understanding of the user requirements.

Identification of potential failure modes This core
task of FMEA performed at an early phase of the lifecycle
helps to identify inadequate transformation of user
requirements to system functions (design flaw), and also
potential inadequecies during implementation of the
functions (implementation flaw).

@% Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

230 Software Quality Management

Bringing synergy into the process Making expert
developers and testers work as a team from the beginning
of a project, pooling and documenting their expertise
systematically, is perhaps the chief success factor of FMEA,
and definitely a very effective way of practising
preventive quality assurance.

There are also at least three aspects of FMEA contributing
to improvement in productivity through reduction of
production cost and shortening of delivery time:

Effective realization of preventive QA The best way
to reduce production cost and shorten delivery time is to
prevent failures by using the method of "fore-checking".

Definition of correctional actions on a priority
basis By using the RPN assessment method, the available
resources (man-power, budget and time) can be used
well-directed.

Coordination of test planning with system design
By coordinated planning of correctional actions and test
cases before implementation, the test effectivity can be
raised significantly.

