
Testing transactional applications: a

practical experience

G. Marzano & P. Romanazzi

Software Quality Laboratory, Tecnopolis CSATA

MICAS'

ABSTRACT

This paper reports a practical experience of software testing accomplished by
the Software Quality Laboratory of Tecnopolis Csata Novus Ortus in co-
operation with Datamat S.p.A. The objective of the joint project was twofold:
the definition and development of a formal test suite, the functional testing of a
transaction processing software in the stock exchange application area .

With respect to the first goal we had the need of define a method for
building a complete test suite in terms of: specification of test environment, test
process, test documentation, criteria for test derivation. The main result of such
experimentation was to allow the replication of the whole test suite in a
different target site.

The VALID toolkit was chosen as the kernel for the test environment.
This tool allows the validation of systems utilising a GUI based on the X
window environment, against its specifications using a black box testing method
(Jason, Ritter [4]). For the test process definition and test documentation we
have taken as reference the IEEE standard 1012 (Software verification and
VALEDation plans), IEEE standard 829 (Software test documentation).

In relation to the second goal we have built a library of test procedures
formally described with the VALID test language and reaching the full coverage
of the functionalities of the application under test. The experience in applying
the method developed during this project together with the technology used, has
shown that this approach is valuable in reducing testing time and costs
especially during regression testing in the software maintenance phase.

INTRODUCTION

Testing is everywhere acknowledged as an important part of the development
process. Beyond this point, in the software engineering community there is a

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

312 Software Quality Management

live debate on how should testing be done, on the techniques or methods to
apply, on exploitation of testing tools. In this paper we'll not try to answer these
questions, but just to explain how functional testing was done in our experience
on a transactional application in the stock exchange area (Sherer [3]).
We hope these results can help in some way others who are facing with
software quality and cost problems.

THE ENVIRONMENT

The testing activity has been experimented on a SUN-4 machine hosting both
the implementation under test (IUT) and the test tool. The IUT was a
transactional application in the stock exchange application area. ORACLE was
the database management system used by the RJT.
VALID is a toolkit for the Verification and VALIDation of Software and
Embedded Systems.

Figure 1: The environment.

By means of a flexible communication channel VALID exchanges data with the
IUT, and so it constitutes a good support for black-box testing (see fig. 1).
Actually it is possible to send stimuli to the application and record the system
reactions. Since VALID toolkit utilizes an X-window for capturing and sending
information from and to the IUT, a standard X-window terminal was opened
through which the IUT was run. The ORACLE interface feature of the VALID
toolkit was used for consistency testing of the database.
Some of the main features of the VALID toolkit are: availability of a test
description formal language used to build test procedures, its capability of
automate test procedure execution and generate test reports, cross referencing
towards the relevant items in the project (such as functional requirements),
recording and playback of all the interactions with the system under test.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 313

TEST DERIVATION

Traditional testing theory has focused on selecting tests that have the highest
probability of detecting the most errors (Sherer [2]). Current testing procedures
attempt to cover, or exercise, as much of the software functionalities as possible
to detect as many errors as possible. Expecially for black-box testing the
problem of deriving complete test suites is still object of many theoretic studies
(Musa, Ackerman [5]).

One of the major drawbacks of black-box testing is its dependence on the
specification's correctness, which is usually not the case at the present. In fact
the test designer needs a correct and complete software specification in order to
generate complete test suite.
Very often, the system to be tested is delivered to the test laboratory with a very
limited documentation or, at the best, a detailed user manual. Since it is
unrealistic to ask the client to provide a well defined software specification
document for testing purposes, the test designer has a very limited basis from
which derive tests.
In this experiment we tried to integrate the user-manual specifications, as it was
the only formal document the client provided, with the knowledge hidden in the
system designers and developers minds.
In conjunction with traditional black-box tests we defined tests for database
consistency checks using the VALID standard interface to ORACLE DBMS.
This approach, which is not much close to the academic topics on how to derive
a complete test suite, showed itself to be very successful and the derived test
suite was very appreciated by the client.

Starting from the process described above, the Laboratory derived the tests in
order to fulfil the following criteria, which where also used to group tests into
homogeneous groups [9].

Setup tests
Tests at a low level of complexity aimed at verifying the correct IUT
(Implementation under test) setup and at proving that the connection with the
test machine and the VALID tool is active and running.
These tests may have a kind of similarity in HW component testing with the
calibration of the test tools.
Usually a little share of tests falls within this test group.

Basic Behaviour tests
Tests at a high level of complexity that reproduce a brief work session till the
activation of the specific function to be tested. Even if, for its own definition,
these tests are able to stimulate many IUT functionalities, each test is aimed at
testing only one specific IUT behaviour.
Stress tests, if required by the user, also fall within this test group. Recycling
peaces of tests already defined, it is usually possible to define an effective stress

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

314 Software Quality Management

test (i.e. the insertion of one numeric entry in the database and subsequent
grandtotal).
A major percentage of test within the test suite fall within this group.

Parameter Variation tests
These tests are aimed at stimulating the software behaviour under the variation
of functions parameters.
System functions are invoked repeatedly each time with different parameter
values.
For numeric parameters the minimum and maximum allowed values are tried
and usually one or more values within the range depending on the criticality of
the parameter (e.g. test of parameters which may vary the complexity of the
computation needs a wider coverage)
For all enumerative parameters the widest coverage is required in particular
when a specific value may change the behaviour of the system (i.e. calculate
totals "T" or grandtotals "G").

Invalid Behaviour tests
These tests check the behaviour of the system under an invalid or unexpected
request. An invalid behaviour could be triggered by wrong parameter's value
within a legal function. It is also possible to invoke an incorrect sequence of
functions or try a forbidden operation (e.g. Modify an item where updating is
disabled). The expected behaviour from the system is, for all these test, a refusal
of the triggered function preferably with an informative message to the user. It
is also possible to test error recovery mechanisms, if they are implemented in the
IUT.

TESTING APPROACH SPECIFICATION

As concerning the testing process specification, during the project there were
two main phases: a first one for test process specification and experimentation,
and a second one for test approach exploitation.
At the beginning of the project, we had to face to questions such as: what kind
of approach apply for the definition of the test procedure and test sequence
starting from the functional knowledge of the application to be tested, what kind
of documentation we should produce, what kind of formalism we should use,
how to apply productively the testing technology to our applicative context.
In this initial phase we had some goals such as: to experiment different kinds of
specifications of the test sequence/procedure, to explore the different
implementation approaches of test sequence/procedure.
To reach these objectives we decided to implement the first test sequences and
procedures following a spiral test process model.
Each turn of the spiral process include the following activities: starting from the
functional knowledge of the application, derive and implement the test sequence
and procedures, specify test sequence/procedures, analyse and solve all the
problems founded, estimate the test development solution used, improve our
testing process definition. We mean for test sequence a succession of

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 315

functionalities commonly activated by the end user formally described with the
VALID language, for test procedures a formal description of the necessary
commands and user actions along to a description of the expected visible
results of these actions for testing a user functionality, and for test case the
data to be passed to a test procedure.
The experience gained in this first phase together with the references of IEEE
standards 1008 and 1012 has allowed us to define a more mature testing
approach exploited in the second phase.
This approach is composed of 4 main activities: test planning, test specification,
test implementation, description of test result.
The test planning activity aims at building the test plan document which
specifies the scope, approach, resources, and schedule of the remaining test
activities.
In particular the structure of the test plan document follows that one proposed
by the standard of IEEE n. 829 and is composed of the following information
items:

-Identifier
It specifies the unique identifier assigned to the test plan document.

-Introduction
It summarises the software items and software features to be tested.

-Software to be tested
It identifies the software to be tested and its version /revision level.

-Features to be tested
It specifies all the functionalities of software to be tested and for each
functionality identifies the set of test sequences dedicated.

-Approach
This item describes the whole approach exploited for testing the entire
application but also some particular approaches used to test some functionalities
or combination of them and explain the reasons.(In our experience we generally
used a "black box" testing technique but for some critical functionalities we
used a "white box" technique).

-Pass/Fail Criteria
It specifies the criteria to be used to determine if the software functionality has
passed or failed testing.

-Suspension/resumption Criteria
It specifies the criteria used to suspend the test and describe the sequence of
activities to perform for resuming the test session .

-Setup activities
It identifies all the steps needed to start up the testing sessions.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

316 Software Quality Management

-Test environment features
It specify all the features of the testing environment such as what is the host
machine, what version of O.S., what version of X windows, etc.

-Temporal schedule.
This item describes accurately the time foreseen for each testing tasks and the
associated responsibilities.

The test specification activity aims at describe in an informal but complete way
the test sequences/procedures. This phase is very important since it produces
the test functional specifications which will allow to derive the test
sequences/procedures to be implemented and executed in the next phase.
The test specification precisely describe the set of test data to apply i.e. the test
cases , the logic sequence of operations, the expected results.
The output of this phase consists of two documents: a test cases specification
document, and a test sequences specification document. In the first document
each test case is described in terms of:

-Identifier
A unique identifier associated to each test case.

-Functionality
The name of the functional requirement tested by the test case.

-Precondition
It is a state of the system under test before the execution of the test case such as
the correct execution of previous test cases.

-Input data
It specifies the set of stimuli to be sent to the system under test by means of the
test procedure.

-Output data
It describes the expected responses of the system after the previous stimuli.

As concerning the test sequence specification, it aims at specify the steps
necessary in terms of sequence of test cases/procedures for testing a particular
feature of the system. Each test sequence is defined with the following
information items:

-Identifier
A unique identifier associated to each test sequence

-Precondition
.It is a state of the system under test before the execution of the test sequence.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 317

-Objective
It states the testing goal of the sequence

-Test steps
It specifies the flow of user functionalities or system screens called by the test
sequence. Each functionality there is associated to the test case/procedure
identifier that tests it.

After the functional specification of the test, the project team began to
generating tests for each system's feature to be tested. At first tests were run
manually and the components responses were checked with the behaviour
described in the test specification. This initial activity was recorded by means of
the VALID X-recording tool. During this initial activity, we asked the
development team to reproduce on the system under test several real work
session highlighting, wherever possible, critical points within the software
functions.
The tool captured the user/system interaction and translated them into a
sequence of VALID language statements composing our initial test procedures.
These initial test procedures were later parameterized to make them easier to be
used with different sets of input/output data and for later maintainance.
These set of test procedures forms the test suite. Since the application under
test was not stable but undergone subsequent modifications, the test suite
demonstrated its usefulness during the regression testing activity. Regression
testing is important since changes and error corrections tend to be much more
error prone than the development of the original code.

The VALID toolkit was of primary importance in this phase. The VALID test
execution tool gave us the opportunity to play back individual tests, a subset of
the test suite, or the entire test suite. The regression tests could be performed
automatically without operator intervention to ensure that the changes did not
introduce new errors.
Any inconsistency between the resulting behaviour and the behaviour described
in the specification were reported by VALID in the test log for further
investigations. Only those tests that failed would need to be rerun under
observation, saving a lot of man-hours. Moreover the formalization of the
approach, would guarantee the same quality of testing even in the future.
At the end of this testing activity the test team developed a test summary made
up by all the test logs and by two test summary matrix as shown in table 1 and
table 2. In the first matrix the columns represent the test sequence identifiers, on
the rows the test cases identifiers are listed, and within the cells there are the
number of call and the number of failure separated by a comma.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

318 Software Quality Management

TC_fxx_01
TC_fxx_02

TC_fxx_n
TOT

TS_01
1,0

1,1

7,3
9,4

...

TS_n
4,1
7,0

5,2
16,3

TOT
8,3 + ...
13,4+ ...

13,2+...

Table 1: Example of Test Sequence - Test Cases cross reference table.

In this second matrix is shown a cross referencing with the system
functionalities, indicating on the columns the test sequence identifiers, on the
rows the system function names or identifier, and on the cross the number of
calls each test sequence makes for each system function.

Fxl
Fx2

Fxn
TOT

TS_01
1
1

7
9

...

TS n
4
7

5
16

TOT
8+ ...
13+...

13+...

Table 2: Example of Test Sequences - Function mapping table.

CONCLUSIONS

Economic competition often forces developers to release applications before
they have been adequately tested. This lead, as the time goes by, to a more
difficult and a slower corrective, adaptive maintenance activity, and to a
degradation of the overall software quality. We must use testing technology for
helping in delivery a quality software product in a timely fashion for minimum
cost (Dunham [1]).
VALID environment gave a great help allowing the recording of sample test
sessions and the collection of test results with very limited effort.
The technique used to derive the test suite, execute the test and report the
results has shown itself to be successful and user appreciated. The automatic
execution of the test suite gives the opportunity to run all or part of the test in a
batch way and makes life easier to the test operator to verify the expected
results. The automatic execution also allows the user to ask the laboratory quick
regression tests sessions with the great opportunity to test the implementation
whilst in the maintenance cycle.
The maintenance of the test suite and the variations triggered by modifications
of the IUT are made easier by the detailed test specification adopted in this
experiment together with the high level of the test specification language used.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 319

REFERENCES

1. Dunham, J. R. "V&V in the Next Decade" IEEE Software May 1989

2. Sherer, S. A. "A Cost-Effective Approach to Testing" IEEE Software March
1991

3. Sherer, S. A. "Measuring the risk of Software Failure: A Financial
Application" Proc. Int'l Conf. Information Systems, Boston, Mass. 1989

4. Prather R.E.

"Theory of Program Testing - an Overview", The Bell System Technical

Journal, 62 (10)ii, December 1983.

5. Musa, J. D. and Ackerman A. F. "Quantifying Software Validation: When to
Stop Testing?" IEEE Software May 1989

6. Myers, G. J. "The Art of Software Testing" Wiley & Sons, New York 1979

7. IEEE standard 1012 "IEEE Standard for Software Verification and
Validation Plans"

8. IEEE standard 829 "IEEE Standard for Software Test Documentation".

9. ISO 9646 "Information Technology- Open System Interconnection-
Conformance testing methodology and framework".

10. Parrington, N and Roper, M "Understanding Software Testing" Ellis
Horwood Ltd. 1989

11. Probert, R. L. and Ural, H. "High-Level Testing and Example-Directed
Development of Software Specification", Jnl. of Systems and Softeare,
November 1984

12. HowdenW.E.

"The Theory and Practice of Functional Testing", IEEE Software September

1985

13. HowdenW.E.

"A Functional Approach to Program Testing and Analysis", IEEE Trans.

Software Engineerig, SE-12 (10) 1986.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

