
The automation of software process and

product quality

L. Hatton

Programming Research Ltd. Waynflete House, H-16 High

ABSTRACT

Software engineering today can be compared to a manufacturing
industry in which a product is generally produced without any
recognisable production line. In any other engineering discipline
this would be unacceptable but appears to be the norm for software
producing companies. For example, the Software Engineering
Institute (S.E.I.) at Carnegie-Mellon University have found that
approximately 85% of all software producing companies are at the
lowest level of software process maturity, officially deemed
chaotic, c.f. Humphrey [1] The S.E.I, defines this to mean that they
are deficient in one or more of the following key areas: Project
Estimation, Project Planning, Configuration Management or
Software Quality Assurance. Other studies show that software
product quality, the intrinsic quality of the code itself, is similarly
poor, with most commercially released packages riddled with
errors which could have been detected by inspections alone, Hatton
[2]. The net result is that users are subjected to unreliable
software, public safety may be prejudiced and software developers
pay far more in both development and maintenance than they need.

It has often been argued in the past that this is the nature of
software engineering and users should accept this. This is no
longer the case. Whilst there is no magical solution, tools already
exist to quantify product quality and automate many key aspects of
both inspection and testing. Other tools exist to automate the
process of change around recent standard software process models
such as ISO 9001 and the Carnegie-Mellon CMM (Capability
Maturity Model). This paper will discuss such tools and how they

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

728 Software Quality Management

can be integrated to automate software process management with
software product quality control. Experiences with such an
environment over the last two years will be presented as a case
history.

INTRODUCTION

It has been proven through a number of studies around the world
that adopting an appropriate Quality Assurance philosophy can
significantly improve productivity. For example, results published
in the llth Feb., 1991 edition of Business Week of a 12 month
study of a Japanese software company adopting quality assurance
techniques in the production of software borrowed from their
other manufacturing industries, and a comparative US software
company show the following:

Lines of source delivered Technical failures per 1,000
per man year of work lines during first 12 months

USA 7,290 4.44
Japan 12,447 1.96

The role of measurement must not be underestimated. In any
quality system associated with manufacturing, a key element is the
notion of measuring the efficiency of the process used and using
that information to improve the process. Such measurements may
be based on the process itself or on the products produced by the
process. This is the cornerstone of the statistical techniques
pioneered by W Edwards Deming and used with such dramatic
success by Japan over the last 40 years or so. It is these techniques
which form the basis of the recently emerged Carnegie-Mellon
CMM (Capability Maturity Model) 5 level model, which is rapidly
assuming importance in the U.S. and elsewhere. In Europe, the
pre-eminent quality standard to which people aspire is based
around the international standard, ISO 9001, which although a
general manufacturing standard, has been translated via the U.K.
TickIT initiative into the software vernacular in the form of ISO
9000-3. The growing importance of such standards is based
around the fact that the E.G. now endorses ISO 9001 and the
D.o.D. endorses the CMM. Mandatory compliance seems just
around the corner.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 729

It is generally acknowledged that management is impossible
without objective measurement to check its progress. This applies
to projects in all disciplines. If working practices and the
reliability of what is produced are to be improved, it is vital to
define the initial state and the final goal and to measure progress
continually in order to get there.

The problem with software of course, is what precisely must
be measured and how can the measurements be used.

PROCESS AND PRODUCT QUALITY

As has been mentioned, the software process is the process whereby
a software pro duct comprising both code and documentation is
constructed. The overall relationship is shown below.

Process Quality -
CMM ISO 9001 etc.

r#- Time

Quality
Soectrum

Top-down

Process
Manager

I Bottom-up

I
Measuring

Tool

Product Quality -
Measurement

Figure 1

The left hand part of this diagram is intended to show that the
improvement of modelling using physical measurement is iterative.
In essence, as in all measurement based sciences, measurement
drives modelling. As understanding grows and models become
more sophisticated, so the models can be used to infer better

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

730 Software Quality Management

measurements and so on. The right hand side of the diagram shows
how to automate this methodology for software development. The
Process Manager performs process control which includes but is
not limited to change and configuration control and uses the
product measuring tool to determine whether the product is
conformant and therefore acceptable. It is vital that this quality
control function is done automatically in conjunction with the
management of change and configuration, as will be discussed later.

For a programming language, the product is source code and
the measurement tool might be an automated inspection tool used
for measuring the objective quality of the source code itself. Such
quality could be defined in a number of ways. It might be for
example, the degree of dependence on unsafe parts of the
underlying language or a measure of its complexity and resulting
maintenance cost implications. For other entities such as design
documents, the concepts are precisely the same, although the
quality measures would be different.

MEASURING THE PRODUCT

For source code, product measurement tools may take many forms
but should support a Quality Assurance philosophy in the following

key areas:

Automatic Standards Enforcement

Portability checking

Reliability checking

• Complexity analysis

Architectural analysis

The first issue, that of maintaining programming standards
automatically, is closely interlinked with the concept of
accountability in ISO 9001. Since Quality Assurance requires
"verifiable adherence to standards which are widely believed to
improve software quality", the importance of a programming
standard cannot be overemphasised. For example, Hatton [2] found
that companies currently break their own programming standards
once in about every 168 lines, a dismal state of affairs which calls
into question the point of having a standard in the first place.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 731

The second two issues together relate to a safe subset of the
language. Working with such a subset is known to eliminate many
classes of errors at the coding stage, saving time and resources that
would otherwise be spent debugging and testing. Hatton [2] found
by analysing millions of lines of C and Fortran from around the
world, that dangerous abuses of the programming language occur
at about the rate of once every 80 lines or so in C and once every
150 lines or so in Fortran on average. These statistics were
compiled by measuring commercial production code and are cause
for great concern particularly when it was found that safety-critical
codes were no better than non safety-critical codes in this area.

Many large organisations (such as IBM and AT&T) have
found that dense, complicated code is inherently less reliable, less
readable and less maintainable than well-modularised code. It is
also much harder to test properly. This is self-evident, but without
tools able to make such assessments of code quickly, it is not
possible to tell which parts of the code are likely to cause problems.
A number of standard complexity metrics are known which can be
used to measure the readability of code, the testability of the logic
and the reusability of the components, (c.f. for example, Akiyama
[3], Boehm [4], Conte, Dunsmore & Shen [5], Fenton [6], Hatton &
Hopkins [7], McCabe [8], Nejmeh [9], Shooman [10], Brandl [11]).
By calibrating these metrics on packages with a known maintenance
history, (Hatton and Hopkins [7]), the relationship between
complexity (quality) and maintenance costs is found to obey rules
similar to the below: (See Fig. 2)

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

732 Software Quality Management

cost

Low
cost

Cost of ownership vs. Quality

Low quality code
Figure 2

High quality code

As in many other branches of engineering, the 80:20 rule
seems to hold up well. In general, 80% of the maintenance budget
will be spent on the 20% most complex modules.

By comparing complexity metric values against those
measured for populations of source code, statements of relative
quality can be made, such as "this module is in the worst 20% of all
software in a particular demographic on several key metrics",
implying an expected higher than average maintenance costs over
the life-cycle. This technique was termed Demographic Quality
Analysis by Hatton [2] who reported that this technique closely
correlates with human experience. It has the additional advantage
of transparency and compares favourably with telling a
programmer for example, that their function has a cyclomatic
complexity of 43, a statement of little value in isolation.

The enforcement of safe subsets

People would like to believe that a programming language is a
well-thought out and reliable development tool. Nothing could be
further from the truth. Most languages are full of compromise and
contain features which are simply too dangerous to use. The
situation is akin to giving a carpenter a hammer with a loose head
and then wondering why people get hurt using it. A classic
example is the language C, which has one of the most rapidly

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 733

growing base of users of any language as well as one of the loosest

heads.

Even though the language is governed by a recent international

standard, programming in C is accompanied by the following
problems impacting reliability, portability and upwards

compatibility:
Some parts of the language are implementation-defined in
the sense that the behaviour must be specified by the
compiler writer but it can be different from machine to

machine.
Some parts of the language are undefined in the sense that
the standard declines to specify what is supposed to

happen.
Some parts of the language have changed "quietly"
compared with the parent de facto standard which most C
in use still adheres to and will now behave subtly

differently.
Other parts of the language are fundamentally unsafe to

use although defined.
C++ the "descendant" of C, contains many features which
are syntactically identical but have different semantics.
Hence an identical program compiled with a C compiler
can do something different if compiled with a C++

compiler.

Compiler writers are not compelled to inform users of these
issues and as a result, few programmers are even aware of them
and yet they are all detectable before compilation and easily
avozWa6/g. As a result of this ignorance, every 9f/z. mfer/acz m
commerc/a//} re/zaW C o/z average /?aj a/Wf q/^ome 6W m z'f,
(Hatton [2]). The fault might not have reared its ugly head yet but
one day it probably will and the system will misbehave. They are
simply faults, or bugs waiting to happen. C is by no means alone in
this but its rapid spread into even safety critical areas gives great

cause for concern.

If follows from the above that a minimum requirement in the
improvement of quality of source code generally is the enforced
removal of any features with the above properties.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

734 Software Quality Management

CONTROLLING THE PROCESS

We have seen above that many common problems with software
products are detectable at a very early part of the code life-cycle.
So why do they still appear with such alarming frequency in the
final product ? The answer is simple and two-fold:

1. Appropriate tools were not available during development

or
2. Appropriate tools were available but their use was ad hoc

because of the absence of process, or enforced

methodology of use.

This is the area in which process management comes into its
own. It should never be forgotten that:

• Process control has no effect without product
measurement.
Product measurement is pointless in the absence of a
process for making use of such measurements.

In its simplest form, Process Control is about the management
of Change, Configuration and Quality. Each one has a vital part to
play and each one is inextricably related to each other and the
principle Process Models, CMM and ISO 9001. The philosophy of
software process control is very simple:

• Define what you are going to do.
Do it.

• Check what you did according to defined standards.
• Record what you did.

The intricate relationship between Change, Configuration and
Quality in a Software Process can best be depicted in layered form:

Change

Configu

Quality

Centre

ration

Contr

Dl

Co

•ol

mtrol
Figure 3

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 735

This diagram illustrates a number of things. The most
important issue is that configuration and quality control are more

primitive actions and should be largely invisible and entirely
automatic. Configuration control relates directly to the product
being modified and direct access to configuration without reference
to the governing requirement for change is an invitation to "hack",
albeit reversibly, violating an important principle of quality
standards, that of no change without requirement. Many companies
in the author's experience do not even have configuration control
inviting irreversible hacking- true chaos. Quality control is in a
similar position. If it isn't done automatically by the process
control system, it will be applied erratically, if at all, as evidenced
by the findings of Hatton [2] on the adherence to internally defined
programming standards described earlier.

In contrast, the management of Change including
requirements, specifications, documentation and code is the visible
framework of the software process. The Change process is
categorised by a request for some change or other maturing
through a number of states starting with proposal as shown below.

I bug report / suggestion

proposal
evaluation

workaround
specification

validation
entation
testing

loading
dissemination

closed
archived

Configuration
Control

Quality
Control

.* — *. impleme
Figure 4

new release

Unfortunately, there is no agreed nomenclature for this yet
although the IEEE Software Engineering standards are particularly
useful. Each change state will correspond to a documented
procedure in the ISO 9001 sense and state change must require
sign-off of responsibility for the previous state and sign-on of
responsibility for the new state. During the Change process, the
product to be changed will only be affected after the change has
been validated perhaps several times, so that requirements and
specifications match. Only at the implementation stage of Change

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

736 Software Quality Management

will the product actually be changed. At this point Configuration
control is used to control the product versions directly. When the
product is released into the loading state, Quality Control is applied
so that only compliant software can proceed to the next state.

The automation of the Quality Control in the above process is
carried out by the Process Manager which runs a series of user-
defined scripts, the results of which define whether the product is
compliant or not. The content of such scripts will be discussed next
as part of a case history but the implied life-cycle of a source code
component within the configuration control system subject to
automatic quality control is shown below:

Figure 5

New modules always pre-exist in the state NULL and existing

modules are in the state CURRENT.

A CASE HISTORY OF PROCESS AND PRODUCT QUALITY
AUTOMATION

Programming Research Ltd. (PRL) is a relatively small
organisation which develops product quality measurement tools for
C, C++ and Fortran (QAC and QAC Dynamic, QAC++ and QA
Fortran) and a process manager (QA Manager) which automates
significant parts of levels 2 and 3 of the Carnegie-Mellon CMM.
These products are used at many sites around the world in various
industries including aerospace (e.g. NASA, European Space
Agency, McDonnell-Douglas), telecommunications (e.g. AT & T),
chemical modelling, (e.g. Shell), Earth Sciences (e.g. BP, Mobil)
and Government (e.g. U.K. M.O.D.). The point here is that there

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 737

are many external users and effective Process Control is extremely

important.

In January 1991, PRL implemented an internal process
automated by QA Manager whose goal was to guarantee
compliance with key parts of the CMM and to form a basis for
ongoing metrics extraction. Other goals included a systematic
improvement policy for existing software (written in either C or
C++), a rigidly defined programming standard for new code, and a
mechanism to encourage re-use.

The architecture of QA Manager is largely as indicated above
in the discussion of Process Control with QAC and QAC++ used as
the product quality measurement tools.

7; /%/ 7997 - Sc/;fcmW 7997

The first stage undertaken was to define an incremental
programming standard for existing code and an absolute
programming standard for new code and a mechanism for
systematically evolving these standards (the Software Engineering
Process Group, (SEPG), a CMM concept), i.e. turning the screws
periodically. This approach ensures that the overall problem is
capped and then systematically reduced.

A number of items were selected split up into different levels -
internal standards transgressions (level 4), complexity warnings
(level 7), ANSI violations (level 8) and ANSI C constraint
violations (level 9) and the C measurement tool QAC was
configured to detect just those. The constraint violation category
might be surprising but some so-called ANSI compilers allow
certain constraint violations in C. The standards for new and
existing code were enforced as follows:

New code

(14 + 1? +lg) * 50 < L AND

19 = 0

where L is the number of executable lines and 1; is the

number of occurrences of items at level i. In essence,
this means no more than one item of any level per 50
executable lines and NO constraint violations.

Existing code

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

738 Software Quality Management

04 + lj +lg) must decrease AND

14 < 14 ; I? < ly ; Ig < 1'g AND

where l\ corresponds to the previous release and lj to

the current release. Hence no level may increase and the
total number of violations must decrease. Again NO
constraint violations are allowed.

The Process Manager was then configured to run QA C with
these measurement criteria and reject any modules at the
implementation stage of the Change process.

f /%wf 2; OcfoW 7997 - DcccmW 7992

Phase 1 of the improvement program was relatively
unambitious to encourage cultural acceptance. The principle
enemy of many attempts at standards maintenance is over-ambition.
This normally results in complete rather than partial failure. This
second phase was considerably more ambitious than the first
because cultural acceptance had been achieved and significant
progress made. The SEPG then mandated the following:

More items were added at the previously enforced levels
internal standards transgressions including indentation and other
stylistic warnings (level 4), complexity warnings (level 7), ANSI
violations (level 8) and constraint violations (level 9) and two new
levels were added, unsafe features (level 3) and obsolescent and
upwards compatibility features (level 5). This latter category
included items which had a different meaning in different dialects
both of C and C++. The effect of adding items is most felt on new
code. Existing code is not so affected as it must simply be better
than the previous version when both are measured for the same
items. The standards for new and existing code were now enforced
as follows:

New code

(h + 14 + 15 + 1? +lg) * 100 < L AND

19 = 0

In essence, this means no more than one item of any
level per 100 executable lines and NO constraint
violations.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 739

Existing code

(lg + 14 + 15 + 17 +lg) must decrease AND

13<1'3;14<1'4;15<1'5;17<1'7; Ig^Tg AND

Again no level may increase and the total number of
violations must decrease. NO constraint violations are
allowed.

The above required a simple change to the shell scripts driven
by the Process Manager.

Phase 3: January 1993 - December 1993

At the time of writing, this has yet to come into force but the
SEPG will mandate the following:

More items added at the previously enforced levels. In
addition, a number of individual items from level 3 had emerged
from analysis of many failures in C programs as simply too
dangerous to allow at all. These became known as "killer items".
The standards for new and existing code will be enforced as
follows:

New code

(l3 + l4 + l5 + l7+lg)*100<L AND

19 = 0 AND

NO killer items.

In essence, this means no more than one item of any
level per 100 executable lines and NO constraint
violations or killer items.

Existing code

(lg + 14 + 15 + 17 +lg) must decrease AND

I3<l'3;l4<l'4;l5<l'5;l7<l'7;lg<l'g AND

19 = 0 AND

NO killer items.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

740 Software Quality Management

Again no level may increase and the total number of
violations must decrease. NO constraint violations or

killer items are allowed.

Again a simple change to the shell scripts driven by the
Process Manager is all that is required. Currently, these shell
scripts total around 230 lines of Unix Bourne shell compatible
commands. Since QA C is around the same speed as the compiler,
the implied lag in returning a source code component successfully
to the Process Manager is at most twice the compilation time, this
worst case arising for a return of a modified component,
necessitating a quality comparison.

So what has been achieved ? First of all, dramatic reductions
in the numbers of these warnings have been achieved in the various
packages under the control of the Process Manager, (which
currently comprise some 200,000 lines of C and C++) to the
benefit of all the packages concerned.

Second, a less obvious but highly desirable benefit has been
that the automatic enforcement of standards concentrates the
programmer's mind wonderfully as sub-standard code is simply
rejected. The result has been a dramatic increase in the average
programmer's fluency with C and in particular, knowledge of its
strengths and weaknesses.

Third, it has frequently been observed that enhancements
which cause the number of complexity warnings to increase
(necessitating action) force the programmer to do something which
normally is difficult to achieve, viz. inspecting familiar code with
the same critical eye as a third party. The reason for this is that
unlike say an implementation defined syntactic issue, complexity
warnings arise on structural issues necessitating a more global
inspection. This has been without exception beneficial with many
occurrences of the "What on earth was I doing it that way for ..."
syndrome leading to substantial reductions in complexity of
previously over-complex components. The programmer cannot
simply ignore it as the Process Manager will not accept it unless the
problem is resolved.

As a result of the efforts of the last two years, PRL is
converging rapidly to the following:

• Zero detectable static faults.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 741

Systematic and progressive re-engineering of existing
over-complex code and control of complexity in new

code.
Verifiable adherence to a set of well-defined standards
known to improve product reliability, portability and

maintainability.

The first of these will achieved in Phase 2. It is expected that
the second and third will be achieved by Phase 3. The recent
introduction of a Dynamic Reliability checking tool, (QA C
Dynamic) will allow maximum run-time error rates during
regression testing to be defined for each product and made
accessible to the Process Manager to enable an enforced
convergence to zero. This is planned for Phase 3.

A number of other benefits have accrued from automated
process control and process and product metrication. First and
foremost an average re-use ratio of 40% has been achieved in the
sense that for every 60 lines of a new product which must be
written, 100 lines are delivered. Even very different products such
as the Process Manager and the product measurement tools have re-

use ratios of 28%. The figures break down as follows:*s«-
Re-use Ratio

QAC
QA Fortran
QA Manager (X)
QA Manager (M)
QAC++
QA C Dynamic

38
32
11
11
38
10

,500
,700
,100
,100
,500
,300

85
71
39
41
49
28

,000
,700
,100
,700
,200
,300

45 %
46%
28%
27%
78%
36%

One likely cause for this very high and increasing re-use ratio
is that recreating the wheel is often more difficult than using an
existing solution because the absolute coding standard is so high. In
other words, if the programmer must recreate the wheel, it has to
be a very good wheel f This fact coupled with the requirement that
all code is maintained by the Process Manager (QA Manager),
giving easy browsing access to all components are compelling
reasons for not recreating the wheel.

Finally, the rapidly growing re-use ratio strongly suggests that
the SEPG should set unusually tough standards for re-usable
components in the quality system in a future process review. This
is now planned.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

742 Software Quality Management

CONCLUSION

It has been shown that both Software Process Control and Product
Quality measurement can be systematically carried out by existing
tools and that such tools can be used to automate a high quality
process and automatically enforce Quality Control. As a result, the
following goals can be achieved:

• Zero detectable static faults.
• Systematic and progressive re-engineering of existing

over-complex code and control of complexity in new
code.
Verifiable adherence to a set of well-defined standards
known to improve product reliability, portability and
maintainability.

To the above, a mechanism has also been described ensuring

that

• Dynamic reliability failures occur at less than or equal to
N per execution minute on standard tests, (where N will
ultimately be zero).

can also be enforced.

Measurement of millions of lines of commercially released code
around the world suggests that code developed to achieve the above
goals will be of a significantly higher quality than the average with
dramatically reduced maintenance costs. The lower levels of
maintenance now being experienced by the case history company
suggest that this is already paying handsome dividends.

ACKNOWLEDGEMENTS

I would like to thank my colleagues, in particular Sean Corfield,
Andrew Ritchie and Norman Clancy, who contributed so much to
the process control and product measurements described here.
With their enthusiasm and capability, automated process and
product control to the standards enjoyed by modern manufacturing
industries has become a very successful reality for software also.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 743

I would also like to thank the many companies who have

contributed invaluable feedback.

REFERENCES

1. Humphrey, Watts S."Managing the Software Process",

Addison-Wesley, 1990.

2. Hatton, L "Population analysis of C and Fortran quality using
automated inspection: 2 - Deep flow analysis and static fault rates",
submitted to IEEE Transactions on Software Engineering, 1992.

3. Akiyama, F (1971) "An example of Software System
Debugging", Proc. IFIP Congress '71, Lbujlana, Yugoslavia,
American Federation of Information Processing Societies,

Montvale, N.J., 1971.

4. Boehm, B W "Software Engineering Economics", Englewood

cliffs, New Jersey, Prentice Hall, 1981.

5. Conte, Dunsmore & Shen "Software Engineering Metrics and
Models", The Benjamin/Cummings Publishing Co Inc Menlo Park,

California, 1986.

6. Fenton, N E "Software Metrics: A Rigorous Approach",

Chapman & Hall, 1991.

7. Hatton L, Hopkins T R "Experiences with FLINT, a software
metrication tool for Fortran 77", Symposium on Software tools,
Napier Polytechnic, Edinburgh, June 1989.

8. McCabe, T A "A complexity measure", IEEE Trans. Softw.
Eng, SE-2,4 (Apr. 1976), 308-320.

9. Nejmeh, B A "NPATH: A measure of execution path
complexity and its applications", Comm. ACM, Vol 31. no. 2,

(Feb. 1988), 188-200.

10. Shooman, M L "Software Engineering", McGraw-Hill, 1983.

11. Brandl, D L "Quality measures in design", ACM Sigsoft.
Software Engineering Notes, vol 15, no. 1. 1990

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

