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Abstract 

The technological demands required to successfully practice either targeted 
irrigation control and/or deficit irrigation strategies are currently reliant on 
numerical models which are often underutilised due to their complexity and low 
operational focus. A simple and practical real-time control system is proposed 
using a model-data fusion approach, which integrates information from soil 
water representation models and heterogeneous sensor data sources.  The system 
uses real-time soil moisture measurements provided by an in situ sensor network 
to generate site-specific soil water retention curves. This information is then used 
to predict the rate of soil drying. The decision to irrigate is made when soil water 
content drops below a pre-defined threshold and when the probability of rainfall 
is low. A deficit strategy can be incorporated by lowering the irrigation “refill” 
point and setting the fill amount to a proportion of field capacity. Computer 
simulations show how significant water savings can be achieved through 
improved utilisation of rainfall water by plants, spatially targeted irrigation 
application, and precision timing through adaptive control 
Keywords: deficit irrigation, wireless sensor network, adaptive irrigation 
scheduling, model-data fusion, irrigation decision tree. 

1 Introduction 

Australia is facing a severe water shortage due to below-average rainfall received 
over the past decade.  The agricultural sector is the hardest hit by this as 
irrigation accounts for almost 65% of total water use nationally [1]. Long-term 
climate forecasts suggest that this situation is unlikely to improve [2].  Therefore 
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the agricultural industry must become increasingly innovatively in its efforts to 
use water more effectively.   Two techniques which have been successfully used 
to improve water use efficiency include improved irrigation scheduling practices 
[3] and the reduction of water application rates using deficit irrigation strategies 
[4]. 
     Optimising the timing of irrigation events involves being able to sense when 
the soil water reaches a threshold level estimated either directly using moisture 
sensors, or indirectly through meteorological data (for example 
evapotranspiration – ET).  Incorporation of short-term weather forecasts can 
improve the projected need for irrigation and save water by increasing the 
amount of rainfall utilised by plants [5].  Solving spatial and temporal variation 
in soil water dynamics, however, becomes more demanding requiring real-time 
monitoring capabilities (e.g. soil moisture sensors, hydrologic models and 
remote sensing), and/or a high degree of empirical soil physical data, both of 
which can be very expensive and labour intensive. 
     Where water is particularly limiting, further reductions in irrigation water will 
be required. This has been addressed through the concept of deficit irrigation.  
Deficit irrigation strategies deliberately allow crops to sustain some degree of 
water deficit and sometimes an associated yield reduction through a significant 
reduction of irrigation water.  The classic deficit irrigation strategy involves 
supplying water at levels below full ET throughout the season.  In practice this 
has commonly been achieved by either irrigating at the same frequency but 
applying less water during each irrigation event, or maintaining the amount of 
water per irrigation but increasing the interval between irrigations [6].  Where 
water accounting has been used, irrigation decisions have generally been based 
on the ‘trigger level’ concept of available soil water. 
     The technological demands required to successfully practice either targeted 
irrigation control and/or deficit irrigation strategies are currently reliant on 
numerical models which are often underutilised due to their complexity and low 
operational focus [7].  A simple and practical real-time control system is 
proposed using a model-data fusion approach, which integrates information from 
soil water representation models and heterogeneous data sources to improve 
output resolution and irrigation decision making. 
     In comparison to other numerical models which act more in a simulation 
capacity for testing various water-management/allocation strategies at the basin 
level, the model presented here is to be applied as a functional monitoring tool 
for automated control at the paddock level. It has the advantage that it can adapt 
the irrigation plans in real-time to meet the desired soil water conditions defined 
by the irrigation rules.  Model accuracy increases with observation as the model 
learns soil water flow relationships.  Whilst this initial training period may result 
in a degree of inaccuracy, this is outweighed by the fact that the model can learn 
soil physical attributes in situ.  Assigning sensors to similar soil spatial zones 
through an initial training phase removes some of the high labour and expense 
demands associated with sensor technology.  The low manual inputs needed to 
use this technology and the limited knowledge required to interpret the output 
are expected to improve uptake by the broader irrigation community. 
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     This paper presents the model-data fusion approach to irrigation control and 
how the technology may be applied in practising deficit irrigation.  Whilst field 
validation has not yet been undertaken, preliminary simulation results suggest 
that water savings can be achieved through consideration of spatial variation and 
short-term weather forecasts into the irrigation decision-making process. 

2 Model data fusion in deficit irrigation 

Sensor network technologies are proving to be powerful tools for monitoring 
real-time changes in the environment. There is a need to aggregate complex data 
from heterogeneous sensors, providing a rich, multidimensional picture of the 
system.  Much work has been done in the field of data fusion [8−11], which 
deals with the functional transformation of data into human apprehensible 
information.  Studies looking at “situation awareness” focus on developing 
models based on how humans perceive and comprehend their environment and 
subsequently anticipate potential change [12, 13]. Situation is defined as a set of 
environmental conditions and system states with which the participant is 
interacting, and can be characterised by a set of information, knowledge, and 
response options [14]. Situation Awareness consists of three levels of mental 
models [12]: 
• Perception is the process by which a participant identifies the status, 

attributes, and dynamics of relevant elements in the environment.   
• Comprehension is concerned with prioritising and evaluating the 

information obtained from perception according to their relevance to current 
goals;  

• Projection deals with forecasting future states of elements in the 
environment based on the awareness achieved in Perception and 
Comprehension.   

     To provide decision support in the real-time environment, a situation-aware 
information fusion system must handle problems in association with inflexible 
knowledge representation. With respect to the soil hydrologic environment, such 
information includes the spatial-temporal distribution and evolution of soil 
moisture which are non-deterministic due to complex interactions among 
environmental factors like soil profile, precipitation, ET, etc. This requires a 
system with the capability to learn new knowledge and adapt to the environment.  
What follows is a description of the model-data fusion approach used to develop 
a simple real-time irrigation control system. 

2.1 A framework for model-data fusion 

Model-data fusion is the approach via which an information system learns 
environmental behavioural models and utilises the learned models to better 
represent and predict environmental phenomena. Figure 1 shows the framework 
of a model-data fusion system. The framework consists of Sensors, Effectors, a 
Classifier, a Model Learner, and a Situation Projector; an Environment 
Representation Model which represents soil characteristics, and a Decision 
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Model which captures a set of irrigation decisions in relation to environmental 
variables.  
 

 

Figure 1: The framework for a situation-aware model-data fusion system. 

     Sensors are data collectors, which continuously observe the environment. 
During the learning stage, the Model Learner learns a Representation Model of 
the environment. The Representation Model captures empirical relationships 
between data inputs and outputs. The learnt model is then used by the Classifier 
to identify environmental properties in a perception-related process. The 
Situation Projector “comprehends” a situation by prioritising information 
according to how it impacts on the current goal.  It also generates a projection (or 
anticipation) based on the Environment Representation Model. A Decision 
Model contains strategies to fulfil the goal under various circumstances. 
Effectors perform tasks which are specified in a decision. The application 
interface enables a user to view information generated at different components so 
as to make decisions (or choose a recommendation).  Interactions between model 
and sensed data ground the decision making process in a dynamic environment.   

2.2 Learning the environment representation model via in situ sensors 

Soil moisture, rainfall, surface run-off, wind, humidity, temperature are some of 
the important types of data that can improve our understanding of the 
environment in the context of irrigation. The sensors adopted in this research are 
soil volumetric moisture sensors, soil water potential sensors (gypsum blocks), 
soil temperature sensors and an automatic weather station. 
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     The Environment Representation Model, is a description of environmental 
variables and their interrelationships, and is used for predicting future conditions. 
The environment is represented as three dimensional soil cubes with each cube 
representing a finite element of soil behaviour. One aspect of soil behaviour of 
significant importance is the relationship between volumetric water content (θ) 
and water potential (ψ). This relationship forms what is known as the soil 
moisture retention curve, and is commonly used to estimate the water-holding 
capacity of soil horizons within the root-zone.  
     Within each cube, a gypsum block measures soil water potential. Correlated 
water potential measurements between spatially neighbouring cubes enables 
localised clusters to be formed. Each cluster of cubes with similar water potential 
behaviour can be assigned a volumetric soil moisture sensor. This approach 
reduces the number of expensive volumetric sensors that need to be employed 
within the field. For each cube, the relationship between water potential and 
volumetric water content is then learnt by the Model Learner during a training 
phase where sensor data is collected from the field. This scenario is shown in 
Figure 2.  

 

3D soil cubic representation Soil Class A Soil Class B

ө

ψ

ө

ψ

Retention Curve A Retention Curve B

soil cube soil water potential sensor soil water content sensor 

 

Figure 2: A 3D cubic representation of soil and classification based on water 
retention characteristics. 

     Direct measurement of retention curves in the field, particularly at such fine 
scale, should provide considerable improvement to the understanding of soil 
behaviour compared with indirect, coarser approximations, such as the use of 
reference soil types, which fail to take into account soil heterogeneity within the 
field.  Reference data may also be inaccurate due to its measurement in a 
different environment (i.e. the laboratory) and under different conditions. There 
is considerable discrepancy between the retention curve of a particular soil type, 
measured in both the laboratory and the field [15]. 

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2008 WIT PressWIT Transactions on Ecology and the Environment, Vol 112,

Sustainable Irrigation Management, Technologies and Policies II  191



     Another common approach to obtain the retention curve is to use Pedotransfer 
(PTF) functions. PTF functions predict the water retention curve from using 
basic, easily measured properties of the soil. Consequently, PTF can be very 
crude approximations and are often only optimised for particular soil types and 
conditions.  
     Ideally, the training of retention curves within the field should cover 
measurements over a significant proportion of the retention curve (i.e. from 
saturation to the permanent wilting point), including the dynamic hysteresis 
within wetting and drying periods.  However, it is unlikely to be possible to 
measure the complete range of potential and volumetric observations in situ 
during the training phrase. For unmeasured regions, the curve can be predicted 
by using non-linear regression or neural network methods such as the Mualem-
van Genutchen model [16], to fit the measured data to retention curve models 
until the relevant conditions have been observed. 
     Retention curves are unique for different soil types as they are dependent 
upon the physical properties of the soil, such as porosity and particle size. 
Therefore deriving retention curves in situ also has the advantage of providing a 
coarse taxonomy of the soil composition of each cube, thus considering spatial 
variability in irrigation decisions. This can be achieved by fitting a model to 
reference and field retention curves and then comparing their shape parameters.  

2.3 Predicting soil water content 

Predicting how the soil water content changes over time becomes an important 
parameter for deciding when to irrigate.  The high frequency of data being 
collected from field sensors offers the potential to predict the short term future of 
soil water content and enables irrigation plans to continually adapt to meet the 
target objectives. 
     One of the challenges in predicting changes in soil water content is that 
wetting and drying behaviour is a non-deterministic process which is dependent 
upon a number of environmental attributes. Hence, prediction of the soil water 
content through modelling is complex, as demonstrated by the Hydrus program 
[17]. Hydrus has not yet been proven to be an applicable solution to support real 
time decision making due to the complexity in the physical modelling.   
     We assume that the rate of soil water change can be learnt from previous soil 
water behaviour in the field. A relationship between the rate of soil water content 
change and the other dependent variables such as precipitation and ET can be 
learnt through observation. The benefit of this approach is that the system is not 
attempting to learn the physical model itself, but instead the relationship between 
soil water change rate and other dependent system attributes. In a sense, it is 
equivalent to the real time learning of PTF functions from the field.  
     With the learned characteristics of each soil class, the Classifier can locate 
environmental variables in the Representation Model (retention curves) and the 
Situation Projector can subsequently infer the needs for irrigation by calculating 
the distance to the refill point (θthreshold) for each soil class. Figure 3 illustrates 
this concept. 
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Figure 3: Predicting the rate of soil drying based on field-derived soil 

moisture retention curves, for irrigation scheduling decisions. 

2.4 Technical-driven deficit irrigation decision model 

Besides the soil drying status, the decision of whether to irrigate and the amount 
of water to apply at the current time, is dependent upon other information 
including rain forecasts, ET demand, current water allocation and other plant 
related factors.  Decision tree learning using inductive inference has been the 
method adopted for deciding when to irrigate. Inductive learning methods 
identify features that empirically distinguish positive from negative observed 
training examples. Figure 4 presents the results obtained from a decision tree 
learning algorithm. Each non-leaf node stands for a test on an attribute. Edges of 
the decision tree coming from the nodes are values of attributes for that node. 
Leaf nodes are used to represent design decisions for selecting a deficit ratio. 
Numbers in parentheses illustrate an observation for the class defined in the leaf 
node. For example, “10.0” indicates that there are ten positive observations and 
no negative observations for that class.  
     The decision rules encoded within the model consider historical irrigation 
treatments, and generalises empirical knowledge that can be applied to select an 
appropriate irrigation treatment for a specific combination of field conditions. 
Three environment variables form the decision tree. These variables describe 
whether a soil cube is at the refill threshold point (node “reachRefillPoint”), if it 
is currently raining (node “currentRain”), and the probability of expected rain in 
12 hours (node “forecastRain”). Leaf nodes illustrate irrigation treatments. 
Irrigation strategies are obtained by traversing from root node to a leaf node. For 
example, some interesting rules can be found: 
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Figure 4: A decision tree structure learnt from running a C4.5 [18] algorithm 
from WEKA [19] on 46 instances of deficit irrigation treatments. 

• if the soil cube has reached refill point whilst it is not raining, and the 
probability of the predicted rainfall is greater than 0.7, irrigation water 
should not be applied. Irrigation is postponed until the next decision 
time, for example, in 4 hours; 

• if the soil cube has reached refill point whilst it is not raining, and the 
probability of the predicted rainfall is between 0.3−0.7, deficit irrigation 
should be applied to mitigate the risks of water stress on plant growth. 
The pre-defined deficit ratio is applied to the accumulated ET since the 
last irrigation or rainfall event to calculate the irrigation requirements. 

     Information fused from various sensors can be used to construct a 
recommendation. The system can also learn and evolve the decision model in 
real time. For example, by monitoring the plant response (e.g. remotely sensed 
canopy temperature), if the pre-defined plant-based thresholds have not been met 
under the applied irrigation deficit ratio, the system can re-adjust to a lower ratio 
when similar environmental conditions prevail. If required, the irrigation 
decision model can also act autonomously to schedule irrigation events.  

3 Model simulation 

An irrigation simulator was developed in NetLogo [20] to demonstrate how the 
model works and contributes to water use efficiency when taking account of 
rainfall information. Scenarios of a simulated deficit irrigation model and a point 
sensor-triggered irrigation system are discussed.  
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     The irrigation simulator uses field data including ET and rain gathered from 
Elliot research farm (North West Tasmania; 41o06′S, 145o46′E) during the period 
of 2 November to 21 December, 2007. This data is scaled down to fit into the 
simulation model with essential variances unchanged. The simulator consists of 
two agent-based models: 

1. A deficit irrigation model, which integrates local weather conditions 
and rainfall forecasts to decide when and how much to irrigate, and 
targeted irrigation control, with application to only those areas that 
have reached the refill threshold point; 

2. A point sensor-based irrigation model, which only uses threshold soil 
moisture to trigger irrigation with uniformed application. 

     To exemplify the effect of different irrigation treatments on water usage, both 
models run under the same sets of environmental conditions including ET, 
rainfall, soil profile characteristics, and boundary conditions such as irrigation 
rate and drainage rate. A 3D soil water diffusion model is used to simulate soil 
water content changes under these conditions. The soil is represented by 3D 
cubes, as shown in Figure 3. The simulated soil consists of loam, clay and sand 
at different horizons (Figure 5). The soil diffusion model is a simplified view of 
the tendency of water to move from one soil cube to another, based on 
differences in soil water contents and soil porosities. Considering a soil cube and 
its neighbouring cubes, soil water diffusion can be simulated by recalculating the 
distribution soil water between cubes:  

T i= P i×
∑ 1

n
T

∑ 1

n
P
− E T − DR                                      (1) 

where  T i denotes soil water content unit for cube i 
            i is the cube for recalculation 
            n is the number of neighbours for cube i  
            P is the porosity of soil cube i 
            ET stands for water loss from evapotranspiration for cube i (only top   
            level cubes have ET) 
            DR denotes water unit loss from drainage for cube i over boundary (only 
             the bottom-level cubes consider DR) 
     Eqn. (1) describes how soil water diffusion is calculated in the simulator.  
Environmental changes can cause the soil water content to re-distribute. Figure 6 
also shows an example of how to apply Equation 1 to calculate simulated soil 
water content in cube i.  By iterating all soil cubes, the effect of environmental 
conditions can be represented through soil water diffusion.    
     Point sensor-based irrigation treatments apply water uniformly to the whole 
paddock. Rainfall is affected by the same environmental conditions as irrigation.  
Water is lost through drainage and ET with some water units retained in the soil. 
Figure 6 shows the accumulated irrigation water usage during 50 time units of an 
irrigation treatment with a model initialised to pre-defined soil water contents.  
     In this scenario, 6170 units of water have been consumed as a result of 21 
irrigation events. 
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Figure 5: Soil profiles and the diffusion approach used in the simulator. 

 

Figure 6: The accumulated irrigation water use for 50 units of time under a 
uniformly distributed irrigation treatment. Dots are used to report 
irrigation events in the previous time period. 

     A deficit irrigation simulation model uses heterogeneous information to make 
decisions on irrigation treatments (i.e. when and how much to apply). Unlike the 
point sensor-based uniform irrigation treatment, deficit irrigation scheduling 
maximises the actual and predicted short-term rainfall events. As shown in 
Figure 7, at the initial stage of irrigation, the sprinklers are not triggered as a 
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result of balancing the effects of current rainfall and the future probability of rain 
on dry cubes in the root zone. In some circumstances, the simulation model uses 
a deficit irrigation treatment (0.5 of accumulated ET in this case) since the 
probability of rainfall is moderate. Applying a reduced amount of irrigation 
minimises the risk of irreversible damage to plants whilst improving rainfall 
utilisation. Figure 7 shows an accumulated water consumption of 4520 units over 
50 units of time, which represents a water saving of roughly 27%, compared with 
the point sensor-based irrigation strategy. We recorded 22 irrigation events in 
this scenario.  
 

 

Figure 7: Accumulated irrigation water use in a deficit irrigation scenario. 

      

Figure 8: The total water content for point sensor-based uniform irrigation 
scenario.  

     In both scenarios, soil water contents are maintained to be below field 
capacity. As the deficit irrigation model integrates information about future 
rainfall events, it adapts irrigation frequency based on the predicted contribution 
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of rainfall to soil water content. The frequency adaptation which is presented in 
Figure 7 does not occur under a point sensor-based irrigation scenario. This has a 
direct impact on the amounts of water consumed. Because the two scenarios are 
assumed to have identical environmental variables (ET, rainfall, drainage), the 
difference between the total soil water contents (shown in Figures 8 and 9) is an 
indication of over-irrigation in the point sensor-based strategy. That is, assuming 
production is fairly constant above the refill threshold point, which water content 
is maintained above this level in both scenarios, the extra water applied in the 
point sensor-based strategy is of no benefit to production.  
 

 

Figure 9: The total water content for the deficit irrigation scenario.  

4 Conclusion 

This paper introduces an information fusion framework to support decision-
making in deficit irrigation scheduling. The simulation results demonstrate how 
real-time data collection may be used to improve water use efficiency by 
considering future rainfall events and practicing targeted irrigation application. 
The simulation model is however a reduction of a physical phenomenon. To 
increase the credibility of the model, data obtained from real-time sensors to 
enhance/calibrate the simulation model is required. At present, the simulation 
model treats drainage as a constant boundary condition. It is necessary to include 
beyond root zone soil moisture sensors to approximate deep drainage to further 
improve the resolution of irrigation decisions. 
     The intention is to consider crop yield models, multiple-objective 
optimisation and remote sensing in the next phase of research.   
     Field quantification is still required to validate this model-data fusion 
approach for deficit irrigation.  
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