@% Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Numerical solutions to arbitrarily sized systems
of coupled first order ordinary differential

equations using computer algebra software
P. Mitic, P.G. Thomas

Faculty of Mathematics and Computing, The Open University,
Walton Hall, Milton Keynes, MK7 644, UK

1. Abstract

This paper describes how computer algebra techniques may be applied to finding
numerical solutions to systems of differential equations using some simple iterative
methods. The advantages and disadvantages of using computer algebra techniques
rather than procedural programming languages such as Pascal and C are assessed.
We consider how the student may learn from using computer algebra software,
using simple iterative methods to emphasise the general approach and the flexibility
of the software. Common examples in engineering are considered.

2. Introduction

Mathematica is used to implement the Euler, 4th. order Runge-Kutta and 2nd.
order Taylor iterations for approximating a solution to the system of equations

where x(?) is a vector of arbitrary dimension. Symbolic computation software
makes it possible for the methods used to be independent of the number of
differential equations in the system. In the case of the 2nd. order Taylor method,
we have developed a method of extending the Euler method which accomplishes
the necessary calculus in a particularly efficient way using replacement rules. The
use of a computer algebra system is of prime importance here because the
differentiation required is done automatically for any input functions within an
integrated environment for symbolic computation.

Using computer algebra software, the student can easily vary parameters and
input functional forms, and program different iterations. We describe how the
software acts as a tool to enable study of the engineering, mathematical and
numerical concepts without the need to learn complicated mathematical methods.

LL9 Doftware Lngineering n tigner Lducation .
Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

3. A two-equation system using the Euler iteration

Consideration of 2nd. order differential equations is useful in this discussion
because of the variety of systems in which they are applicable. They occur in
engineering, population dynamics, mechanics, biological systems etc., and all but
the simplest have no analytical solution. A simple way of obtaining a numerical
solution to such a differential equation is to rewrite it as a pair of two first order
differential equations. We consider, as an example, a spring-dashpot system with
a non-linear damping term g(x2 - 1)5c, which gives the Van der Pol equation

J'c'+£(x2—l)5c+x:0; e>0. Ll)

The dependent variable, x , represents the displacement from the equilibrium
position. The initial condition y(0)=0.5. will be used, and we set £=1. Minorsky
[1] obtained the same form of equation by modelling a spontaneously oscillating
valve circuit. Using the substitution y =X, we obtain the pair of first order
differential equations

y=x, y=el-*ly-x. (3)
The Euler method is applicable, and may be summarised by the iteration
X=X, th y.=y,thi(x,y,), x,=a, y,=b n=01.... ... ()

This form can be reproduced using Mathematica code due to Maeder [2]. The
functionEulerStep code encompassesbothiterations forx andy . It doesnot
look like the iterations in (4), which is a disadvantage from the student's point of
view. It does represent a general case which is independent of the number of
equations in the system, and can be easily amended for other numerical techniques.
The procedure Euler is a repeated application of EulerStep and uses the
Mathematica function NestList, which was designed for just this purpose.
There are two versions of Euler, one of which takes time, 7, as an explicit
parameter and the other of which does not. Such polymorphic definition is not
possible naturally in a procedural language such as C or Pascal, and means that
various input forms are possible. The student does not need to learn and use a
number of similarly named functions which all do similar things. The code is

Eulerstep(f , y_, y0_ , dt_]:=
yO + N[£ /. Thread[y -> y0]] dt

Euler(f List, y List, yO List, {tl_, dt_}]:=
NestList[EulerStep(f, vy, #, N[dt]]&, N[y0],
Round [N[tl/dt]] 1 /:

Length[f] == Length[y] == Length[y0]

Euler([f List, y List, yO List, {t_, tO_, t1 , dt_}]:=
Module[{ res },
res = Euler[Append([f,1], Appendl[y,t],
Append[yO0,t0], {tl-tO0,dt}];
Drop[#, -1]& /@ res
] /; Length[f] == Length[y] == Length[y0]

L)l{/l”(llt Lzllsllltcl lllg i lllsll(" Lo uiituri Lk
Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Applying Euler is done using the following code.

equations = {y,-x + (1- x7°2) vy};

vars = {x,y};
steps = 25;
steplength = .1;

VdP=Euler [equations,vars, {0.5,0}, {steps,steplength}];
Plotting the result is done using the following code.

Y = Map[#[[1]]&,VdP];

t = Range[0,steps, steplength];

tY = Transpose[{t,Y}];

pl = ListPlot[tY, AxesLabel->{"t","Y"},
DisplayFunction->Identity]

Show[pl,DisplayFunction->$DisplayFunction]

All numerical output is suppressed, and the result is the graph (Figure 1), which
gives an excellent overview of the form of the numerical solution.

Y
o ~ Y ot
1 B
\\ .'0
'- .' t
5 10 15 20 25
S
K v;"

-2 iy i v

Figure 1. Van del Pol oscillator obtained using the Euler iteration

The power of this computer algebratechniqueisthat thetermequations can
easily be altered in a natural way without the need to write new code and compile
it. The student can learn the important features of this and similar systems, and of
the Euler method by amending equations, steps and steplength.

4. Extension to a more accurate iteration technique

The principles of programming the Euler method can easily be extended to more
sophisticated methods. All that is necessary is to change the function which
implements the iterative step. Thus, to implement the Runge-Kutta 4th. order
iteration, EulerStep is changed to RKStep and a new procedure, RK, replaces
Euler. The two are exactly similar except that the former refers to RKStep
instead of EulerStep. The student can do this by knowing nothing more than
the form of iteration.

@% Tr@R¢tions on Informatiqﬁ'@ﬂ'@wpurgﬁg)iﬁg@ﬂﬁ%ogjpp VB ﬂg}@ﬂQ@dﬂE&ﬁymew.witpress.com, ISSN 1743-3517

RKStep[f , vy , yO0_, dt]:=

Module[{k1l, k2, k3, k4},
k1l = N[£ /. Thread(y -> y0]] dt;
k2 = N[£ /. Thread[y -> y0+k1/2]] dt;
k3 = N[£ /. Thread[y -> y0+k2/2]] dt;
k4 N[f /. Thread[y -> y0+k3]] dt;
yO0 (k1 + 2 k2 + 2 k3 + k4)/6
]

+

Itisinstructiveto superimpose the Euler and Runge-Kutta profiles for this particular
Van der Pol equation. The method for doing this is explained clearly in Shaw and
Tigg [3], and the result is shown in Figure 2.

Figure 2: Superimposed Van der Pol profiles:
Euler (dotted), Runge-Kutta (solid)

At this stage, the flexibility of the software makes it possible to study the
accuracy and stability of the two iterative methods. Multiple profiles can be
superimposed, and it is easy to assess a useful number of steps for the iteration. Of
special interest is the least number of steps required to give a given accuracy for a
target value of x(#), say x(25). The necessary theoretical considerations are given
in, for example, MST204 [4] .

5. Problems arising from programming a Taylor iteration

In principle, replacing a function such as EulerStep, and incorporating the
result in a new procedure which uses NestList is all that is needed to implement
an alternative iteration. However, Taylor iterations involve one or more
differentiations of the function f of (1). For example, the y-iteration takes the
following form for the Taylor 2nd. order method:

h2
yn+] :yn+hf(xn’yn)+;f’(xn’yn)~ (5)

Programming thisis tricky and involves replacement rules to effect the replacement
of y'(x) terms by a function of x and y(x) once f* has been calculated. The advantage
of computer algebra software in this context is that all necessary differention(s) can

@% Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

be done by means of software. This is not possible using C (or similar), or a
spreadsheet. Onceitis done, the student caninvestigate the effect of using a method
which converges faster, in exactly the same way as for the Euler and Runge-Kutta
methods. In particular, ill-conditioning can be searched for. This is particularly
important, and students should be aware that any solution obtained requires
intelligent interpretation. It can be tempting for lecturers to set 'do-able' problems
(Mitic [5]) in an attempt to make the student's life easy, but this situation is
unnecessary given that we have symbolic computation tools.

The new procedures, Taylor2Step and Taylor2, which implement the
iteration are listed below (the time dependent version of Taylor2 isomitted). The
code for the differentiation is the one line

df = D[f,t] /. Thread[D[v,t]->f];
inTaylor2. Inordertoeffect the differentiation stepin Taylor2,itisnecessary
to pass numerical values of the derived functionto and from Taylor2Stepaswell
asnumerical values of the functionitself. Hence, thefirstargumentin Taylor2Step
isapair {f, df}, the arguments of which represent the numerical values of the
function and the derived function at each stage of the iteration respectively.

Taylor2step[{f ,df }, var , y0O , t_ , dt_]:=
Module[{},
yO + N[f /. Thread[var -> y0]] dt +
N[df /. Thread[var =-> y0]] dt"~2/2!
]

Taylor2[f ,v ,v0_ ,t ,tl1 ,dt_]:=
Module [{df},
df = D[f,t] /. Thread[D[v,t]->f];
NestList[Taylor2step[{f,df},v, #,t,N[dt]]g&,
v0,Round [N[t1l/dt]]]
] /; Length[f] == Length[v] == Length[v0]

The need to differentiate makes it necessary to make the dependence on an
independent variable explicit. Hence, to use these procedures we must write
equations = {y[t],-x[t] + (1- x[t]"2) yI[t]l};

vars = {x[t],y[t]l};

Thus, the Taylor method has mixed blessings for the user. It is not easy to program
and its usage is slightly different to other methods considered here.

6. A one-equation system

In order to illustrate the extreme flexibility of any given iterative method, we
now consider a simple first order differential equation which arises from an
elementary R-L circuit, and apply the Euler method. The circuit consists of a
resistor, R, aninductance, L, and a voltage, V(7), in series. The differential equation
for the current, x(¢), is Lx =V (t)— xR, x(0)=x,. Only one equation isinvolved,
but it must still be entered as a list containing one element for the sake of maintaining

@% Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

228 Software Engineering in Higher Education

the generality of the procedure. It is thus marginally harder to use these procedures
for one differential equation than to use it for two!

To show, further, how the software can aid the student, we illustrate the case
of a voltage function, F(f), which has a piecewise definition, and which leads to a
very difficult equation to integrate. Mathematica cannot do it directly, whichis due
to the piecewise definition, but it would be possible to treat each piece separately.
The natural way in which definitions can be stated, and the way in which there is no
essential difference between posing the problem for this system and any other,
makes computer algebra software ideal for the study of this topic. The required
inputs are as follows.

R = 100;
v0 = 100;
L = 40;

x0 = {2};

(* V(t] is constant for 0<=t<10 and is a modulated
sinusoidal function for 10<=t<=20 *)

V[t /; (t>=0 && t<10)]:= V0/2

V[t /; (t>=10 && t<20)]:= VO E~(-t/10) Sin[t]

equations = {(V[t]- R x)/L};

vars = {x};

steps = 20;

steplength = .1;

current=

Euler [equations,vars,x0, {t,0,steps,steplength}];

In producing the numerical solution profile, Figure 3, we tried many
variations of the voltage function, number of steps and total time. Furthermore,
we invite the reader to superimpose the graph of Figure 3 on a graph V(¢). This
is the sort of exploration we would encourage a student to do, and it can be
done with virtually no knowledge of the programming language itself, since this
mimics natural mathematical notation.

X

2

/\ t

s W/ 135 ~" 2

Figure 3: Current, x(¢), in an R-L circuit with a
piecewise-defined voltage function

@% Transactions on Informati

Software Lnglneerln in rigner L.ducalion sl
on and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

7. The Rossler Attractor: a 3-equation system

In principle,

it is easy to perform similar computations with 3 dependent

variables, but it is harder to visualise the result in some cases. This is because it is
necessary to know the ranges of the space variables, x, y and z. Without this, 3D-

plots can appear

truncated. Rossler systems are discussed by Peitgen, Jiirgens and

Saupe [6], and an example is given in the Mathematica input below. A 3-D display
is obtained by "joining the dots" with the Line function (Figure 4).

equations = {-(z+y), x+0.2y, 0.2+z (x-5.7)};
vars = {x,y,z};

steps = 100;

steplength = .02;

rossler = RungeKutta[equations,vars,{-1,0,0},

{steps, steplength}];

Show [Graphics3D[{Line[rossler]}], Axes->Automatic,
PlotRange->{0,25}]

Producing ill

Figure 4: Rossler attractor 3-D plot

ustrations such as Figure 4 requires considerable memory if the

curveis to appear smooth, but does not take too long. It is easy to extract the space
coordinate separately and plot each against time. Clearly, these techniques can be
extended to higher order systems in the same way, extracting coordinates as
necessary to plot against each other or against time.

8. Built-in numerical methods

Mathematica has the built-in function NDSolve, which can be used as an

alternativetothe

methods described here to solve differential equations numerically.

It cannot be used to investigate the properties of individual numerical methods, or
tounderstand how a given method works. We have not used it here for this reason.
The form of the output produced by NDSolve is not explicit. The result can be
cast into a graphic object, but not directly into functional form or a list of points.

@% Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

230 Software Engineering in Higher Education

Using a user-programmed numerical method in this context can often help to
identify aninherent lack of robustness in a mathematical model. The Euler method,
although less accurate than other methods discussed here for given step size, should
give consistent results for small step sizes. If it does not, ill-conditioning may be
indicated. This can be disguised by using a more accurate method exclusively.

9. Conclusion

The major strength of a symbolic computation system for investigating and
using numerical techniques is that the functional forms as well as parameters can
serve as inputs. Furthermore, there is no need to specify the length of an input list
in advance, so that the same procedure can be used with input lists of arbitrary
length. Polymorphic procedure definition means that procedures with different
numbers of arguments can have the same name. Such a system is of benefit for the
student because ofits flexibility. Symbolic manipulations, including those involving
calculus, can be incorporated such that they are invisible to the user, who can
concentrate on interpretation of results and methodology. Thereis no need to write
and recompile code, or to include a parser in the code instead.

Computer algebra packages have their disadvantages. They are much slower
than executable Pascal or C code because they interpret code, althoughit is possible
to compile frequently used Mathematica code fragments. Much more memory is
also required, and it is not possible to produce a dedicated stand alone Mathematica
file.

In particular, scientists and engineers can benefit from using computer algebra
software because the supplied functions and procedures are frequently designed
with their needsin mind. The way in which these functions and procedures are used
constrains the user to follow logical sequences and to performtedious manipulations,
without having to worry about how to do individual sub-tasks or making minor
€erTors.

10. References

Minorsky, N. Nonlinear Oscillations, Van Nostrand, 1962.

. Maeder, R.E. Programming in Mathematica, Academic Press, 1991.

3. Shaw, W and Tigg, J. Applied Mathematica, Getting Started, Getting it Done.
Addison-Wesley, 1994

4. MST204, Applied Methods and Modelling (Unit 19), Open University Press,
1982

5. Mitic, P & Thomas, P.G. Pitfalls and Limitations of Computer Algebra,
Computers and Education 22, 4. Elsevier Science. 1994

6. PeitgenH., Jurgens,H. and Saupe,D. Chaos and Fractals: New Frontiers of

Science. Springer-Verlag. 1992

N =

