@% Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Object-oriented analysis and design: a
question of approach

H.C. Sharp, M.A. Newton

Faculty of Mathematics and Computing, The
Open University, Walton Hall, Milton Keynes,
MK7 6AA, UK

Abstract

Later this year, the Open University (OU) will offer the first
presentation of a new course in object-oriented software technology.
This course covers a wide range of issues from programming in
Smalltalk to object-oriented analysis and design, to management of
object-oriented projects. It is part of the Masters degree programme
which is aimed at individuals who are involved in software
development professionally. As with all OU courses, the course is to be
taught using distance teaching techniques, so course materials are
presented through a combination of media including written text,
computer software and video. Each course is expected to have a lifetime
of about six years — a long time in a field which is moving as rapidly as
object-orientation.

This paper discusses our experiences of designing the object-oriented
analysis and design element of the course: the approach chosen, the
difficulties encountered, and the solutions devised.

1 Background

Choosing what you want to teach about object-oriented analysis and
design (OOA&D) and what you want to use as a basis for this teaching
is not easy. Many OOA&D methods have been developed, and whilst
there are published papers which compare them [1, 2], these
comparisons do not usually focus on educational criteria. Conferences
which have concentrated more on education [3, 4] have included papers
relating to teaching environments, programming languages, object
orientation in the undergraduate curriculum, group working and the



@% Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

310 Software Engineering in Higher Education

need to use real world problems as case studies, but little has been
reported about OOA&D teaching.

Key questions for us were What are the important issues of OOA&D?
How should they be taught? What method, if any, should the teaching
be based around? D’Souza [5] offers some interesting comments and
suggestions regarding education and training for object orientation, but
does not answer these questions. There have been some useful
experience reports to draw on [6], but little which pulls together
relevant issues.

In this paper we discuss some of the main issues we encountered in
designing the OOA&D element of a postgraduate course which has
been developed over the past two years.

2 MB868: Object-oriented Software Technology

The course in which we are teaching object-oriented analysis and
design, and from which this paper arises, is part of the Open
University’s programme: Computing for Commerce and Industry (CCI),
which leads to an MSc. The programme is targeted at people who want
to study part-time, usually because of work commitments, but in
particular at those who have considerable computing experience and
want to update their knowledge, obtain a theoretical basis for their skills
or simply obtain a qualification relating to their work.

Although every student is assigned to a tutor, there are no mandatory
tutorials, and in some cases the only contact with the student is via three
written assignments completed throughout the six month presentation.
Students are therefore working on their own with little technical
support, and although courses in the (not too distant) future may use
technology to support group working at a distance, the technology is
not yet cheap enough, nor sufficiently understood in the distance
education arena, for us to be able to rely on it.

The course is called “Object-oriented Software Technology” and it
consists of about 100 to 120 hours of study. The development of the
course is overseen by an external academic assessor and an external
industrial assessor. Its scope includes various aspects of the object-
oriented approach to software development, with the overall aim of
providing an understanding of the use of object concepts both for
programming and for analysis and design, together with an
appreciation of the implications for working practices in adopting an
object-oriented approach. The analysis and design element of the course
accounts for approximately 3/8 of the teaching material.

The initial issue was whether to introduce programming before or after
analysis and design. We decided to teach programming first, because it
provides a basis for the object concepts required when doing analysis
and design — we did not consider it appropriate to start teaching
analysis by having to introduce object ideas in the abstract. We also
expected our students to have some programming skills, though we



@% Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517
Software Engineering in Higher Education 311

could not make assumptions about any particular language. There is a
healthy debate currently being waged about whether knowledge of
procedural languages helps or hinders the acquisition of object expertise
[7], but there is no conclusive evidence either way. We believe, however,
that teaching object-oriented programming first may help to counter
any possible misconceptions. Smalltalk was chosen as the programming
language because we thought that it could be introduced with
minimum prerequisite knowledge, and that it provided a sounder basis
for object concepts than, say, C++.

Similar general considerations influenced our approach to analysis and
design. It was quite possible that students would have some previous
experience of a conventional method for analysis and design, in
particular from another course within the CCI programme, but we
could not make knowledge of any approach, whether based on a
structured or a data model method, a prerequisite for the course.

Thus there was an inherent conflict in what we wanted to do: identify
the benefits of an object-oriented approach while not being able to do it
in a detailed comparative way. Our resolution of this problem was to
have a short description of the differences at a fairly abstract level,
which includes a brief description of conventional development, to
exclude comparative comments in the actual teaching of OOA&D, and
to discuss the differences in more detail in a later part of the course
which covers management aspects. This later part aims to show that it is
possible to simply substitute OOA&D for a conventional method,
resulting in some benefits in understanding and flexibility, but that the
benefits which may arise from reuse require a significant change in the
organisation of work and the responsibilities of individuals.

The working environment of our students leads to other influences on
our courses, where the relevance and applicability of the material to
commercial and industrial practice is an important factor for students
and their managers; however, we have to interpret this requirement in
as broad a way as possible, so as not to exclude students.

These considerations led to a set of requirements on the approach we
should take in our teaching of analysis and design.

3 Criteria for choosing an OOA&D method

M868 is not intended to be a training course for a particular analysis and
design method. Our aim is to equip students with enough knowledge
and experience to be able to appreciate the basic concepts involved in
this approach to system development, and to be able to make sense of
any methods which they may encounter in their professional lives.
Although we were trying to remain method-independent, i.e. not to
concentrate on one commercially-available method, it became clear
early on that this was not feasible.

There are areas in which methods agree. For example, most methods
include techniques for identifying and documenting classes and their



@% Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

312 Software Engineering in Higher Education

relationships, and for modelling the dynamic behaviour of the classes.
However, the techniques vary considerably, and unlike conventional
software development which has been practiced long enough for some
‘common wisdom’ to have emerged, we could find little common
wisdom in object-oriented analysis and design. Indeed, even the areas
of apparent agreement are, on close inspection, misleading. For
example, there are significant differences in the treatment of
relationships between classes, in terms of both how they are identified,
and how they are represented.

We therefore had to choose one of the many analysis and design

approaches to teach. In making this choice, the following issues were

considered:

* The approach should be credible commercially. Teaching an
academic method, or one which has not been used in industry is
likely to dissuade companies from encouraging their employees to
take the course, and put off the kinds of student who come into the
CCI programme. Although this is not a training course, we still need
to impart practical skills;

¢ The techniques should be as mature as possible so that problems will
have been smoothed out. Since the course has to survive for about six
years, the approach needed to be reasonably stable;

¢ It had to be possible to teach the approach at a distance and to give
students practice in the skills required by the method. An approach
often advocated in academia and industry as an effective way of
educating teams into the object way of thinking is to start using a
technique such as CRC cards [8, 9], or an 'Object Game'. These
techniques involve team members role-playing, acting out scenarios
with each of them pretending to be one of the objects identified for
the system. This has also been found to be beneficial for team
building. In the distance education context, this option is not viable,
since we need to consider students working on their own;

* We wanted to provide students with a complete view of object-
oriented development, one which would cover all stages from
requirements definition through to implementation. The approach
we chose therefore needed to provide a rounded view of the process;
integrating techniques ‘on the fly’ in a course such as ours is not
practical.

* A clear distinction between analysis and design was desirable. This
was to facilitate the sequential teaching style which had to be
adopted. Although we wanted to emphasise that designing object-
oriented systems is an iterative process, we have to present the
material in a sequential fashion; an approach which had a clear
analysis/design boundary would help in this;

¢ There should be a comprehensive text book source and adequate
published examples of how to use the approach. This was an
important consideration for three reasons:



@% Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Software Engineering in Higher Education 313

1 the course team needed a reference text in order to prepare the
teaching material;

2 we decided to use case studies as the basis for the teaching
material so as to give the students practical OOA&D experience
(three case studies are included in the analysis and design section
of the course), therefore a set of readily-accessible practical
examples of the approach being applied was essential;

3 students may refer to the text if they require a supplement to our
teaching.

Based on the above criteria, we chose to use OMT [10], although we
would not wish to claim that this is the only approach which fulfils the
above criteria. There were two principal reasons for this choice:
Rumbaugh et al’s book is clear and contains a substantial number of
worked exercises; industrial contacts confirmed its commercial
credibility.

4 OMT: the chosen one

OMT (the Object Modeling Technique) was developed at General
Electric Research and Development Center. It takes a modelling
approach to analysis and design, and is based around three models
which represent different views of the system: an object model, a
dynamic model and a functional model.

1 An object model, which captures information about the classes and
their relationships, is the first model to be developed, and in many
cases, is the most important model. This model represents the stable
structure of the system and is the one around which the system will
be built;

2 A dynamic model has two components: a set of diagrams which
represent a life history for each class, describing its states and the
events to which it responds, and a diagram which shows how the
classes interact. This model concentrates on the control aspects of the
problem;

3 A functional model concentrates on the computational or processing
aspects of a system. It records the details of the computations which
the system must perform.

The object model is developed first, followed by the dynamic model and

finally the functional model. Once all three models are available the

method follows an iterative development in which the three models
evolve, thus eliminating the need to change notation part way through
development — a situation which often causes problems in conventional
development. The approach divides OOA&D into three phases:

Analysis, System Design and Object Design. A distinct activity which

involves translating the resultant design into an implementation is also

recognised. OMT compares against the criteria described above as
follows:



@% Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

314 Software Engineering in Higher Education

* Commercial credibility. One of the indicators of the acceptance of any
method within the commercial environment is the availability of
CASE tools to support it. A number of these to support OMT have
appeared on the market, and there is evidence that tool suppliers are
finding that OMT is very popular [11]. In addition, discussions with
industrial contacts confirmed that OMT is one of the approaches
being adopted widely in industry.

¢ Maturity. OMT has been widely-available for many years, has been
applied to many different systems, and is relatively mature;

* Distance teaching. OMT does not rely on team interaction. Classes are
identified initially from a requirements document, and a set of
guidelines is given for refining the list;

* Coverage of development. OMT includes guidance for all phases of
development, from requirements analysis to implementation.
Although there are problems with the approach, and there is less
guidance for the later stages of development, OMT was one of the
first widely-known methods to cover all phases of development.

* Separation of analysis and design. OMT has a distinct phase for analysis
and two phases for design.

® Reference material. Rumbaugh et al.’s book [10] is widely available. It
contains exercises at the end of each chapter, with selected answers,
and three example applications. In addition, various articles have
looked at applications of OMT.

5 Difficulties encountered and solutions adopted

e In common with any method, there are gaps in OMT, and although it

is quite mature compared to other object-oriented analysis and
design approaches, there were areas in which the guidance available
was not adequate. The principal concern was how to integrate the
different viewpoints. To overcome this, we showed how the different
models related to each other as they evolved, and how they could all
be used to progress the definition of operations. At the end of
analysis, we drew up a table which indicated where elements in one
model may be reflected in another model, and then took this unified
view forwards into design.
Another area of difficulty in OMT is the use of a functional model.
The need for such a model is disputed by many in the object-oriented
world, as being a throw-back to functional decomposition. This
aspect of the model is being revised by the developers of OMT in
recognition of this, but it is not being completely dropped. We
decided to introduce this model, but to accord it less emphasis that
the other two models.

* Since the first part of the course introduces object orientation using
Smalltalk, students embark on the analysis and design section of the
course with a particular view of what is an object. They must change
their mindset on coming into analysis and design so as to be able to



@% Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517
Software Engineering in Higher Education 315

use the concepts but reject the implementation bias. This problem has
been approached by highlighting how ideas can be interpreted in a
Smalltalk environment, but also emphasising when such
interpretations are inappropriate. For example, in analysis and
design, attributes should not be objects, whereas Smalltalk leads you
to believe that everything is an object, including attributes.

¢ The notation used in OMT is both complex and at times vague, for
example the meaning of aggregation. For teaching purposes, we
need to be precise and explicit, especially because of the
circumstances of our students, and the fact that the course has a life
of six years or more, i.e. we cannot change the presentation next year!
This has had two implications. Firstly, we have had to describe
explicitly the meaning of the notation, or indeed anticipate any
misunderstandings suggested by the terminology used. Secondly, we
have only introduced enough of the notation to allow the
development of the case studies. Although this may sound limited,
all the fundamental concepts are covered, and in dynamic modelling,
many of the advanced elements are introduced.

* In common with other OOA&D methods, OMT is evolving. In an
attempt to maintain the accuracy of the course for as long as possible,
we have included teaching, albeit brief, about CRCs and Use Cases
[12].

* Although we sought a method with distinct analysis and design
phases because of the sequential nature of the teaching style, analysis
and design is not a rigid sequence; we have to allow for the
prototyping and cyclic nature of development. At the same time, it
would be inappropriate to present deliberately incorrect models to
students as this may cause confusion. We have overcome this by
emphasising that the models produced are the result of a number of
cycles and discussions, although there are also occasions on which
‘errors’ have been found to illustrate the validation mechanisms in
action.

* Analysis and design is usually a team activity. Imparting the flavour
of object-oriented development in a team setting is achieved via the
video element of the course, which includes an excerpt from an early
design meeting.

Summary

During the development of the course on Object-oriented Software
Technology at the Open University, we have had to consider a number
of issues related to the distance teaching of object-oriented analysis and
design. This paper describes the constraints and influences of the OU
style of teaching, and the requirements we identified for what and how
OOA&D should be taught as part of this course.



@% Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

316 Software Engineering in Higher Education

In particular, we explain why we had to choose a specific methodology
as the basis for our teaching, give our criteria for choosing a
methodology and show how OMT satisfies these criteria.

Finally we describe some of the difficulties in the use of OMT that we
encountered in the development of our teaching material, and the
solutions we adopted. However, we have not yet had feedback from
students studying our course materials, and so look forward to
evaluating the effectiveness of our approach.

References

1 Arnold, P. et al. Evaluation of five object-oriented development
methods, JOOP, 1991, pp 101-121.

2 de Champeaux, D. & Faure, P. A comparative study of object-
oriented analysis methods, JOOP, 1991, pp 21-33.

3 TaTTOO '94, Proceedings in Object Technology Transfer, Alfred
Waller, 1994.

4 OQOPSLA ‘92 Educator’s Symposium, in addendum to Proceedings of
OOPSLA’92, ACM Press, 1992

5 D’Souza, D. Education and Training, JOOP, 1992, 5.

6 Bruegge, B., Blythe, J., Jackson, J. & Shufelt, J. Object-oriented system
modeling with OMT, pp 359-376 Proceedings of OOPSLA’92, ACM
Press, 1992.

7 Sharp, H.C. What do programmers need to become object-oriented?
in Object Technology Transfer, Alfred Waller, 1994.

8 Beck, K. & Cunningham, W. A Laboratory for Teaching Object-
Oriented Thinking, SIGPLAN Notices, 1989, 23 11.

9 Wirfs-Brock, R.J., Wilkerson, B. & Weiner, L. Designing Object-
Oriented Software, Prentice-Hall, Englewood Cliffs, NJ, 1990.

10 Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W.
Object-oriented Modeling and Design, Prentice-Hall, Englewood Cliffs,
NJ, 1991.

11 Frost, S. OMT - Taking it Further, Select Software Tools Ltd.,
Cheltenham, 1994.

12 Jacobson, 1., Christerson, M., Jonsson, P. & Overgaard, G. Object-
oriented Software Engineering: a use case driven approach, Addison-
Wesley, 1992.



