Temperature analysis on fire resistance experiments of partially encased beams

P. A. G. Piloto¹, A. B. R. Gavilán² & L. M. R. Mesquita¹
¹Department of Applied Mechanics, Polytechnic Institute of Bragança, Bragança, Portugal
²Department of Mechanical Engineering, University of Salamanca, Zamora, Spain

Abstract

Twelve fire resistance tests, grouped in four series, were developed using partially encased beams (PEB) without concrete slab, for different load level and shear connection. PEB were built with standard hot rolled IPE100 profile and reinforced concrete between flanges. Fire resistance was determined for standard ISO834 nominal heating curve, using small fire resistance furnace and portal frame. Temperature was measured in three different sections along PEB length, for three different materials (steel, concrete and reinforcement). Average temperature in each section and material was compared to the average over length temperature. Each series presented similar results, with good reproducibility. Special focus was given to critical temperature. The maximum temperature difference between sections S1, S2, S3 and the average element length temperature is smaller than 3.2% for test series 1. For test series 2, 3 and 4 the maximum temperature difference is smaller than 5.1%, 6.3% and 11.2%, respectively. Temperature is not uniform in cross-section. After the initial heating stage, temperature revealed a constant difference of approximately 150ºC between temperatures measured inside and outside, defining two main temperature evolutions. Temperatures measured outside revealed always higher temperature level.

Keywords: partially encased beams, fire resistance, critical temperature.
1 Introduction

Partially–encased beams are elements in which the web of the steel section is encased by reinforced concrete. They are usually built-up with I-Shape or H-shape steel sections however they can also be constructed from thin-walled built-up sections. These elements are casted in the floor, and once the concrete cured, section behaves with composite action. Concrete between flanges provides several advantages over a steel beam, increasing fire-resistance, load bearing and stiffness, without enlarging the overall size of the cross section. These advantages outweigh the increased self-weight of the element.

Partially encased beams (PEB) have been widely tested at room temperature, but only a small number of experiments under fire conditions are reported.

Kindmann et al. [1] performed 13 tests on PEB with and without concrete slabs, proving the importance of the reinforced concrete between flanges for the ultimate bending moment. This research adjusted Eurocode for the design of partially encased composite beams.

Hosser et al. [2], carried out 4 experimental tests on simply supported composite PEB, connected to reinforced concrete slabs, under fire conditions. The research developed three-dimensional analytical model, sufficiently reliable in accuracy, to estimate the effective slab width.

In 1995, Plumier et al. [3] performed 12 full sized test joint specimens under cyclic loading, consisting of PEC connected to PEB. Authors concluded that neither the connection type (welded, bolted) nor the web thickness affected the performance of the specimen. Authors have also observed that yielding took place in the beams and that beam flanges always buckled outward due to the presence of concrete.

Lateral instability was investigated at room temperature by Lindner and Budassis [4], using 22 full-scale PEB with two different steel sections. A new design proposal for lateral torsional buckling was proposed, taking into account the torsional stiffness of concrete.

Maquoi et al. [5], improved and implemented the knowledge on lateral torsional buckling of beams, including PEB, and prepared design rules that were not satisfactory covered by the existing standards. The elastic critical moment and the ultimate lateral torsional buckling moment resistance were revised and improved.

Assi et al. [6] developed a theoretical and experimental study on the ultimate moment capacity of PEB. Authors performed 12 tests to investigate the contribution of different types of concrete. According to authors, normal concrete showed insignificant enhancement to flexural strength, when compared to lightweight concrete.

More recently, Kodaira et al. [7], decide to determine fire resistance of 8 PEB. Authors demonstrate that reinforcement is effective during fire. The numerical method did not well predicted experimental temperature, even though the global thermo-mechanical behaviour seemed to present results in good agreement. The performance criteria are not in accordance to the European.
standard [8], because Authors decided to use either deformation criterion or rate of deformation criterion to determine fire resistance.

In 2008, Elghazouli and Treadway [9] performed 10 full scale tests. The experimental analysis was focused on the inelastic performance or partially encased members. Authors discussed several parameters (strain hardening of steel, concrete confinement, extension of section yielding) related with capacity and ductility with relevance to design and assessment procedures.

Nardin and El Debs [10] studied the static behaviour of three composite PEB under flexural loading at room temperature, testing some alternative positions for shear studs, using mono-symmetric steel section. Experimental results confirmed that studs are responsible for composite action and increase bending strength.

The purpose of this study is to analyse temperature in three different sections of each PEB during fire resistance tests and evaluate the uniformity of heating inside furnace. The temperature of furnace environment was already been tested and numerically validated in a previous work [11], using sixteen plate thermocouples.

2 Partially encased beams

PEB are constructed by filling the space between the flanges of a steel profile with reinforced concrete. Partially encased sections can achieve higher fire resistance performance when compared to bare steel sections. The increase in fire resistance is due to the encased material, reducing the exposed steel surface area, introducing concrete which has a low thermal conductivity. Fire resistance can also be increased by reinforcement as reported in a previous work [12].

Partially encased beams were designed according to figure 1, using different types of mechanical connections to stirrups (welded and not welded).

![Figure 1: Cross section dimensions for PEB.](image)

PEB were built with IPE100 steel S275 JR, using C20/25 encased concrete, with four longitudinal steel B500 rebars having a diameter of 8 mm. Stirrups were designed and built with B500 rebars having a diameter of 6 mm, distributed through the length, at a distance of 167 mm. PEB were casted in laboratory, without the need of formwork and tested after more than 60 days, with respect to
the first casting phase. The second casting phase was performed one week after
the first. Surface of materials had not special treatment and were considered as
delivered by manufactures. Steel elements were cut from long steel bars, using
traditional machinery. Stirrups were welded (W) to the web of steel profile and
not welded (NW). Reinforcement was welded to stirrups for the W case and tied
with wire rope for the other case (NW).

3 Fire resistance tests

Partially encased beams were tested using to European standards [8], grouped in
to four series, see table 1. Three series were used to analyse the dependence on
load level (40, 60 and 80% of plastic moment at room temperature, \(M_{pl,Rd}=13844\)
Nm); one series was prepared to compare the thermal and mechanical behaviour
of PEB without welded stirrups (NW). Table 1 refers to the conditions of each
test.

Each element was positioned inside the furnace for loading and heating, as
represented in figure 2. Tests were performed with constant mechanical load and
increasing temperature according to the standard fire ISO834 curve.

Table 1: Series of fire resistance tests.

<table>
<thead>
<tr>
<th>Series</th>
<th>Specimen Identification</th>
<th>Stirrups [W / NW]</th>
<th>Thermal Load</th>
<th>Load level [%M_{pl}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B/1.2-01</td>
<td>W</td>
<td>ISO834</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>B/1.2-02</td>
<td>W</td>
<td>ISO834</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>B/1.2-03</td>
<td>W</td>
<td>ISO834</td>
<td>40%</td>
</tr>
<tr>
<td>2</td>
<td>B/1.2-04</td>
<td>W</td>
<td>ISO834</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>B/1.2-05</td>
<td>W</td>
<td>ISO834</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>B/1.2-06</td>
<td>W</td>
<td>ISO834</td>
<td>80%</td>
</tr>
<tr>
<td>3</td>
<td>B/1.2-07</td>
<td>NW</td>
<td>ISO834</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>B/1.2-08</td>
<td>NW</td>
<td>ISO834</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>B/1.2-09</td>
<td>NW</td>
<td>ISO834</td>
<td>80%</td>
</tr>
<tr>
<td>4</td>
<td>B/1.2-10</td>
<td>W</td>
<td>ISO834</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>B/1.2-11</td>
<td>W</td>
<td>ISO834</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>B/1.2-12</td>
<td>W</td>
<td>ISO834</td>
<td>60%</td>
</tr>
</tbody>
</table>

Figure 2: Testing conditions and main cross sections.
The distance between supports of each PEB was “Ls” = 1.210 m. Two different supports were applied; the top support restrained Z/Y displacements and X rotation, while the bottom support restrained Z/Y displacement and Z/X rotations. The latest was built with a shaft suited into drilled web. The length exposed to fire “Lf” was equal to 1.0 m, while the total length “Lt” of each specimen was defined to 1.37 m.

Three different cross sections were defined to measure temperature (S1-S2-S3).

The objective of determining fire resistance is to assess the behaviour of PEB when submitted to heating and load fire conditions. The method is able to quantify the ability of an element to withstand load when exposure to high temperatures, using appropriate performance criteria. Fire resistance may be expressed as the time or in temperature (critical) for which the appropriate criteria have been satisfied.

3.1 Instrumentation

Thermocouples type K were positioned along the length of each PEB, according to figure 3, using the spot welding machine. For concrete temperature readings in positions Si-IC and Si-OC, thermocouples were welded to a small steel washer, wrapped in concrete.

![Figure 3: Thermocouples positions at three different cross sections.](image)

Temperatures in materials were acquired with frequency of 2 [Hz], using MGCPPlus multichannel electronic measurement unit.

Temperature in furnace was acquired with 0.5 [Hz], with a plate thermometer, which comprise an assembly of a folded steel plate. The plate thermometer has the ability to measure the correct ratio of convective and radiative heat transfer for a flat surface.

3.2 Material properties

The mechanical properties were determined by tensile testing, according to international standards for hot rolled and cold formed steel, see table 2. Three samples were collected from the web of steel hot rolled profile and two more
samples were collected from steel reinforcement material. Table 2 accounts for the modulus of elasticity “E”, the proof strength “R_{p,0.2%}”, maximum value of stress prior to the first decrease in force “R_{Eh}”, lowest value of stress during plastic yielding “R_{eL}”, tensile strength “R_m” and percentage of total extension at fracture “A_t”.

Table 2: Tensile tests for hot rolled and cold formed steel.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Steel profile Average</th>
<th>Std. Deviation</th>
<th>Steel reinforcement Average</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E [GPa]</td>
<td>197.901</td>
<td>2.948</td>
<td>203.294</td>
<td>2.110</td>
</tr>
<tr>
<td>R_{p,0.2%} [MPa]</td>
<td>300.738</td>
<td>6.720</td>
<td>524.993</td>
<td>3.521</td>
</tr>
<tr>
<td>ReH [MPa] (fy)</td>
<td>302.466</td>
<td>5.749</td>
<td>531.508</td>
<td>7.908</td>
</tr>
<tr>
<td>ReL [MPa]</td>
<td>300.856</td>
<td>4.028</td>
<td>520.825</td>
<td>4.068</td>
</tr>
<tr>
<td>Rm [MPa] (fu)</td>
<td>431.252</td>
<td>5.020</td>
<td>626.574</td>
<td>11.539</td>
</tr>
<tr>
<td>A_t [%]</td>
<td>41.584</td>
<td>0.231</td>
<td>25.155</td>
<td>0.495</td>
</tr>
</tbody>
</table>

The thermal properties were not measured but were assumed from EN1992-1.2 [13] and from EN1993-1-2 [14]. Particular attention was dedicated to thermal resistance of interface between both materials. Authors verified that thermal conductance equal to 80 kW/m² was acceptable for validation of experiments [15].

3.3 Performance criteria

The performance criteria used for load bearing (rating R) are independent of the ultimate limit state attained by each partially encased beam. Fire resistance time was defined by the elapsed time between the start of heating and the failure of load bearing capacity.

The load bearing criteria or performance criteria were defined according to testing standards [8], using the displacement parameter “D” and rate of displacement parameter “dD/dt” criteria. The ultimate limit state was considered when both parameters exceeded limits, eqn. (1).

\[
D = \frac{L^2}{400 \, d} \quad [mm]
\]

\[
dD/dt = \frac{L^2}{9000 \, L/30} \quad [mm/min] \quad (if \ D \geq L/30)
\]

(1)

The performance criteria were used to determine critical temperature “\(\theta_{cr,d}\)” and fire resistance time. This is the time in completed minutes for which the test specimen was able to support the test load.

3.4 Temperature measurements

The nominal fire heating curve ISO834 was used for heating PEB elements. Temperature was registered in three different sections, S1, S2 and S3, to verify the homogeneity of heating produced by fire resistance furnace. The maximum temperature difference between sections S1, S2, S3 and the average element temperature is smaller than 3.2% for test series 1. For test series 2, 3 and 4 the
maximum temperature difference is smaller than 5.1%, 6.3% and 11.2%, respectively.

Temperature is not uniform over the cross-section; after the initial heating stage, temperature evolution revealed a constant difference of approximately 150 °C between temperatures measured inside and outside each section, defining two main temperature evolutions. Temperatures measured outside revealed always higher temperature levels. The initial oscillation in temperature was due to the moisture effect in concrete. Figures 4–7 represent temperature evolution in section S2 for each tests series.

Test B/1.2-09 presented higher cracks when compared with other tests, reason why temperature increased inside concrete, in comparison with previous tests series 2.

Figure 4: Temperature in section S2, for series 1.

Figure 5: Temperature in section S2, for series 2.
Figure 6: Temperature in section S2, for series 3.

Figure 7: Temperature in section S2, for series 4.

Test B/1.2-10, from series 4, missed temperature readings inside concrete in section S2.

Figures 8–11 represent the temperature distribution in each element according to each series. Critical temperature was determined for each material by weighted average based on temperature readings and the area contribution for each reading. “Tis”, “Tic” and “Tir” refer to steel, concrete and reinforcement critical temperatures, determined for section “Si” (i=1,2,3), respectively, according to the following expressions, eqn. (2).

\[
T_{is} = \frac{2Af(SiOS) + Aw(SiWS)}{2Af + Aw} \\
T_{ic} = \left[\frac{1}{4}Ac(SiIC) + \frac{3}{8}Ac(SiIC + SiOC) + \frac{3}{8}Ac(SiIC + SiOS)\right]/(Ac) \\
T_{ir} = SiRS
\]
(2)

where “Af” is the area of the flange, “Aw” is the area of the web, “Ac” is the concrete area, “Ar” is the reinforcement area and “At” is the total cross section.
area. Critical temperature “TSi” was dete
rmined for each section “Si”, based on
area weighted average temperature, according to eqn. (3)

\[TSi = \left[Tis(Aw + 2Af) + Tic(Ac) + Tir(Ar) \right] / At \] (3)

Critical temperature “θ_{cr,d}” for each PEB was determined using the critical
temperature of each section, eqn. (4), based on weighted temperature of each
section TSi.

\[θ_{cr,d} = \left[TSi + 2TS2 + TS3 \right] / 4 \] (4)

Temperatures are represented up to the critical temperature by increments of 5
minutes.

Figure 8: Temperature on exposed fire length for test series 1.

Figure 9: Temperature on exposed fire length for test series 2.
The deformation mode shape was the same for all three tests on series 1. Ultimate limit state was attained by plastic hinge formation; after 20 minutes, the rate of displacement “dD/dt” exceeded the limit criterion but did not verify the condition. Fire resistance time agrees very well, for all tests in 25 minutes. Temperature distribution is almost constant over each element.

The ultimate limit state for test series 2 was attained by instability (lateral torsional buckling); after 13 minutes, the rate of displacement was exceeded as well. Fire resistance time did not agree for all tests. 18 minutes were determined for tests B/1.2-04 and B/1.2-05, while 19 minutes was determined for test B/1.2-06. Temperature distribution is almost constant for each test, but different levels were determined for each registered time.

Fire resistance was also determined for different stirrup conditions. Series 3 differed from series 2, because stirrups were not welded to the web of profile. Ultimate limit state was attained by lateral torsional buckling; after 13 minutes, the rate of displacement was exceeded, as well. Fire resistance time equals
18 minutes for all tests in this series, although temperature distribution is not the same for each test.

Test series 4 was performed using 60% load level, with stirrups welded to the web. The ultimate limit state was attained by the formation of a plastic hinge; after 16 minutes the rate of displacement was exceeded. Fire resistance time of 20 and 21 minutes were determined for tests on this series. Temperature distribution was almost equal for every tested beam.

Progressive damage of concrete was verified for each fire resistance test due to excessive deformation for longer fire exposure. Flexural cracking and debonding of concrete were observed at mid span. Encased concrete blocks presented expressive displacement outward of encasement (Y direction), as expected during tests series 3.

4 Conclusions

Twelve bending tests were performed under fire standard ISO834 conditions to evaluate fire resistance and to determine the behaviour of partially encased elements. Three different load levels were considered (40, 60 and 80%) and two different bond conditions were tested (welded and not welded).

Fire resistance depends on load level, as expected. Fire resistance decreased from 25 to 21 and 18 minutes, as load ratio increased from 40% to 60% and 80%, respectively.

There was no evidence of shear bond effect. Tests in series 3 presented higher outward movement of concrete that was responsible for higher temperature inside cross section, but fire resistance was the same determined on series 2.

Differences between temperatures along each element length were smaller than 10%, respect to the element average critical temperature. Temperature of reinforcement represented the lowest value in all sections. Two different temperature evolutions were recorded for experiments, proving that temperature was not uniform. Temperature distribution along each exposed PEB was almost constant proving the uniformity of heating and the insulation at the supports.

Results provide essential data to the calibration and validation of new simplified design methods, tabulated data and advanced numerical methods.

References

