
Modeling system integrity of a security critical
system using Colored Petri Nets

S. H. Houmb1 & K. Sallhammar2
1 Department of Computer and Information Science, NTNU, Norway
2 Centre for Quantifiable Quality of Service in Communication Systems,
NTNU, Norway

Abstract

Recently, the need for techniques for quantification of security attributes of IKT
systems has been raised. This relates both to security requirements in QoS archi-
tectures, as well as input to trade-off analysis regarding the design and choice of
security mechanisms to comply with an established security policy. Early research
in this area has focused on state transition models, such as Markov or semi-Markov
models. In the dependability domain these techniques are used to measure values
such as mean time between failures (MTBF), and to quantify frequency and con-
sequences of risks. The dynamics of security attacks makes it intractable to use,
due to the problems with state explosions. To be able to express the complete
state space of a security critical system, one needs to consider not only hardware,
operating system, and application/services faults, but also the survivability of the
system in terms of intentional and accidental security breaches. In this paper, we
build a stochastic prediction system to estimate the system integrity of a security
critical system. We make use of Colored Petri Nets (CPN), a higher-level formal-
ism for stochastic modeling, analysis, and simulation. The prediction system is
implemented as a generic and hierarchic CPN model.
Keywords: Colored Petri Nets, stochastic modeling, operational security, quantifi-
cation of risk, risk management

1 Introduction

System integrity is the property that a system performs its intended function in an
unimpaired manner, free from deliberate or accidental unauthorized manipulation
of the system and its data. The ISO 15408 “Common Criteria” standard [1] pro-

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 82,
 www.witpress.com, ISSN 1743-3509 (on-line)

Safety and Security Engineering 3

vides criteria for qualitative evaluations of the security level of a system, while
“ISO 13355 – Guidelines for the management of IT Security” [2] provides guide-
lines on risk management of IT security. However, none of these standards pro-
vides sufficient support to express the operational (run-time) security level of a
system.

As for dependable systems, the behavior of a security critical system can be
described in means of state transitions diagrams. However, to be able to express
the complete state space of a security critical system, one need to consider not only
intentional and accidental security breaches, but also hardware, operating system,
and application/services faults. The latter three issues may be covered by the use
of traditional techniques from the dependability domain, while the first two, which
are characterized by being consciously performed with malicious intentions, pose
more stringent requirements on the dynamics of the model.

In this paper we build a prediction system to quantify operational system
integrity. The prediction system is based on the recommendations of ISO 13335
and Common Criteria, especially the class FPT - Protection of the ToE Security
Functions, which focus on protection of system integrity. To cover all relevant
aspects, we make use of Colored Petri Nets (CPNs). A CPN uses colored tokens,
which gives the opportunity to distinguish between the different fault types. The
remainder of this paper is organized as follows. In Section 2 we describe early
work on quantifying operational security. In Section 3 we present the ontology
for system integrity, while we in Section 4 describe the generic hierarchical CPN
model. We conclude the paper by summing up the main contributions, as well as
point to future work.

2 Related work

In Littlewood et al. [3] a first step towards operational measures of computer secu-
rity is discussed. The authors point to the lack of quantitative measures for deter-
mining operational security, and presents a model based on traditional probability
theory. They re-define the input space and usage environment for dependable sys-
tems, by including intentional attacks posed upon the system. In [4] Ortalo and
Deswarte present a quantitative model to measure known Unix security vulnera-
bilities using a privilege graph, which is transformed into a Markov chain. The
model allows for the characterization of operational security expressed as mean
effort to security failure, as proposed in Littlewood et al.

In [5] Madan et al. consider security to be a Quality of Service (QoS) attribute
and, based on ideas from [3], present an approach to quantify security attributes
of intrusion tolerant software systems using stochastic modeling techniques. Wang
et al. [6] extends the state transition approach in [5]. They argue for the difficulty
of capturing details of real architectures in manually constructed Markov mod-
els, and advocate the use of Stochastic Petri Nets (SPN). A similar approach is
used in Singh et al. [7], which describes an approach for probabilistic validation of
an intrusion-tolerant replication system. They use a hierarchical stochastic activity

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 82,
 www.witpress.com, ISSN 1743-3509 (on-line)

4 Safety and Security Engineering

nets (SAN) model to validate intrusion tolerant systems, and to evaluate merits of
various design choices.

In [8] Jonsson and Olovsson present a quantitative analysis of attacker behavior.
The analysis is based on empirical data collected from intrusion experiments per-
formed by undergraduate students at Chalmers University in Sweden. The result
from the experiment showed that a typical attacker behavior comprises three
phases; the learning phase, the standard attack phase, which is indicated to be
exponentially distributed, and the innovative attack phase.

The work presented in this paper is based on the initial concepts discussed in
[3] and adopted in [4–8]. We consider two aspects when quantifying risk; system
failures caused by normal and accidental usage, and intentional attacks caused
by the security environment. By not restricting our approach to intrusion tolerant
systems, we generalize the idea of the hierarchical model in [7], and provide a
more generic model than [6].

3 Concepts and ontology for operational system integrity

In [9] Jonsson and Olovsson present an integrated dependability and security
framework. In the framework the input characteristics to a system are interpreted
in protective terms, whereas the output characteristics are interpreted in behav-
ioral terms, with respect to the user of the system. Furthermore, they distinguish
authorized users from unauthorized users. The focus is on the functional require-
ments of the system, meaning that systems should be secure and dependable at the
same time. Confidentiality and availability is defined as behavioral concepts, and
integrity as a protective concept.

In our approach we extend the framework of Jonsson and Olovsson, by not only
considering aspects related to the influence from the environment, but also sys-
tem failures due to hardware faults, operating system faults, application/services
faults, or other incorrect behavior from the system. Figure 1 illustrates the extended
dependability and security framework. The system model consists of the object
system, often called target of evaluation (ToE), operating in its security environ-
ment. The object system interacts with, and delivers services to its environment,
which represents the system behavior. Furthermore, there is an influence on the
system from its environment, which gives inputs to the system. Figure 2 depicts
the ontology for the system integrity framework by describing the main concepts
and their relations. There are two main sources that determines the system integrity
of a security critical system; failure rate of object system describing the depend-
ability of a system, and success rate of security breaches from the environment
describing the security of a system. Dependability is defined as the combination of
the reliability, safety, and maintainability of a system [10]. The security of a sys-
tem is described the preservation of the security attributes confidentiality, integrity,
and availability [1, 2].

A security breach is caused by a security attack, which represent any action
that may compromise the security of the system. Safeguard is a practice, proce-
dure or mechanism that reduces risk. A threat is a potential undesired event that

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 82,
 www.witpress.com, ISSN 1743-3509 (on-line)

Safety and Security Engineering 5

Authorised User

Unauthorised User

ToE/Object System

Authorised User

Unauthorised User

Environmental influence

Fault introduction
System behavior

system

integrity

confidentiality

reliability, availability

delivery-of-service

denial-of-service

Hardware Failure
Operating System

Failure
Application Failure

Internal/Systeml influence

Fault introduction

system

integrity

system

integrity

system

integrity

system

integrity

Figure 1: The extended dependability and security framework; describing system
behavior as a result from environmental and internal influence on the
object system.

Failure rate of object system

Success rate of security breach from environment

protective

(Non-user)

Non-user User

behavioural

System Integrity

Dependability

Reliability Safety Maintainability

Segregation Robustness

Security

Confidentiality Availability Integrity

Figure 2: Concepts and their relations describing system integrity of security crit-
ical systems.

might exploit vulnerabilities in the object system, leading to an unwanted inci-
dent [6, 11]. Figure 3 describes this relationship as three different scenarios. (1) A
threat is initiated, but no vulnerability exists. (2) A threat is initiated and exploits
a vulnerability, which leads to an unwanted incident. (3) A threat is initiated, but a
safeguard exists and prevents the threat from exploiting the vulnerability.

The failure rate of the object system, denoting system failures, may be due to
hardware, operating system, and application/services faults or any combination
of the three. We define the failure space as a set of type, attribute, and layer as
depicted in Figure 4. Type denotes the type of failure, meaning whether or not
the failure is caused by intentional or accidental events. Attribute denotes the

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 82,
 www.witpress.com, ISSN 1743-3509 (on-line)

6 Safety and Security Engineering

[vulnerability
does not exist]

[vulnerability exist] [safeguard exist]

[safeguard does not exist]

tthreat is initiated

unwanted Incident occurs

threat is prevented by Safeguard

[vulnerability
does not exist]

[vulnerability exist] [safeguard exist]

[safeguard does not exist]

Figure 3: Overview of the relationship between threat, vulnerability, safeguard,
and unwanted incident.

Attribute Layer Type

Layer Type

Attribute

TypeLayer

Attribute Type
Attribute Layer

Figure 4: Possible combinations of failure type, security attributes, and the OSI
layers presented as a Venn diagram.

security attributes involved; confidentiality, integrity, and availability. Layer refers
to a certain layer in the OSI-model.

4 Modeling system integrity using CPN

The dynamics of possible combinations of fault sources, which may cause a sys-
tem integrity breach, makes it intractable to use state transition models. Firstly, the
state space will grow exponentially compared to the number of threats and vulner-
abilities in the system being modeled, eventually leading to a state space explosion.
Secondly, capturing details of real system architectures in a manually constructed
Markov model is difficult [6]. We therefore advocate the use of Colored Petri Nets
(CPN); a higher-level formalism for modeling, analysis, and simulation of state
space models that is more concise and closer to a designer’s intuition.

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 82,
 www.witpress.com, ISSN 1743-3509 (on-line)

Safety and Security Engineering 7

tthreat exploits vulnerability

4.1 Colored Petri Nets

A CPN model of a system consists of places, transitions, and tokens. In contrast
to state transition models, the possible states are not represented by the places,
but rather by the markings of the CPN model, where the current marking is the
number of tokens in each place. In CPNs the token are referred to as colored,
and carries a data value that belongs to a given type. Arc expressions are used to
describe changes in the state of the CPN when the transitions fires. To be able
to fire, i.e. occur, a transition must have sufficient amount of tokens in its input
places that match the arc expressions. The transition is then enabled. By using the
time concept in CPN, it is possible to put deterministic or stochastic delays on
transitions. An enabled transition may therefore not fire immediately, but rather
after a random time delay. Hence, one is able to analyze the performance of not
only Markov models, but also non-Markovian models by means of discrete event
simulation. The formal definition of the syntax and semantics of the CPNs used in
this paper can be found in [12].

4.2 A hierarchical CPN system model

We use the ontology for system integrity to design the generic and hierarchical
CPN model. Figure 5 depict the top level of the generic hierarchical CPN model,
while Figure 6 gives an overview of the data types used. The model includes inten-
tional, accidental vulnerability insertion, as well as hardware, operating system,
and application/services fault execution.

The model is defined to be in the state “system integrity breach”, whenever the
marking of place “System integrity breaches” has one or more tokens of any color.
An ideal security critical system, operating in an ideal world, should initially be
in a completely secure state; the marking where the place “Vulnerabilities outside
system” contains all the tokens in the CPN model. Tokens of the color “Threat”
represent the possible environmental vulnerabilities that may be inserted into the
system, as well as non-environmental possible faults that may be enabled. How-
ever, in practice a system will always be vulnerable, at least with respect to physical
deterioration of hardware components, and therefore another initial marking of the
CPN model should be used.

When the transitions “Vulnerability insertion” and “Vulnerability removal” is
enabled they will fire after timed delays, sampled from probability distributions,
representing the variability of time to insertion of new vulnerabilities in the system,
and the time to detect and remove vulnerabilities from the system. Note that there
is a probability, (PV), embedded in the transition “Vulnerability removal”, which
can be used to model the system’s ability to detect different kind of vulnerabilities
that may exist in the system. If the transition “Vulnerability insertion” fires, one
or more tokens are transferred to the place “Vulnerabilities idle in system”. This
enables the transitions in the underlying sub-models, which describe how these
vulnerabilities may cause systems integrity breaches.

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 82,
 www.witpress.com, ISSN 1743-3509 (on-line)

8 Safety and Security Engineering

Vulnerabilities

outside

system

Vulnerability insertion

Vulnerabilities

idle

in system

System integrity

breaches

Accidental

vulnerability execution

(caused by human)

and system restoration

HSIntentional

vulnerability exploration

(attacks)

and system recovery

HS

Threat

Vulnerability

if (type==3)if (type==1)

HS

Fault

execution and system

restoration

HS

if (type==2)

Vulnerability

if (type==2)

if (type==3)if (type==1)

PV

Vulnerability removal

HS

Figure 5: The top level of the hierarchical CPN model for system integrity breach
analysis.

(* -- threats and vulnerabilities -- *)

color Threat = product AttributeList * LayerList * Type * Time timed ;

color Vulnerability = product AttributeList * LayerList * Type * Time timed ;

color Time = TIME ;

(* -- security attributes -- *)

color Attribute = with confidentiality | integrity | availability ;

color AttributeList = list Attribute ;

(* -- system layer -- *)

color Layer = with A/S | OS | HW ;

color LayerList = list Layer ;

(* -- type of breach/failure -- *)
color Type = with intentional | accidental | failure ;

Figure 6: The data types of the hierarchical CPN model in Figure 5.

In the following we describe the CPN sub-models for the transitions represent-
ing intentional and accidental vulnerability execution. The sub-model “Fault exe-
cution and system restoration” models failure situations described by traditional
dependability theory, and will not be explained in further detail in this paper. Read-
ers are referred to textbooks on the subject, such as e.g. [13].

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 82,
 www.witpress.com, ISSN 1743-3509 (on-line)

Safety and Security Engineering 9

 Attack

exploits

vulnerability

HS

Initiated attacks

Vulnerabilities

idle

in system

System integrity

breaches

Vulnerability

Vulnerability

Attack

initiation

HS
 Disabling

attack

HS

Vulnerability

P I/O

P I/O

System

integrity restoration

HS

(1-PV)

PS

(1-PS)

(a) Intentional Vulnerability Exploiting

 Accidental

event execution

HS

Initiated accidents

Vulnerabilities

idle

in system

System integrity

breaches

Vulnerability

Vulnerability

 Accidental

initiation

HS
 Disabling

accidental event

HS

Vulnerability

P I/O

P I/O

System

integrity restoration

HS

(1-PV)

PS

(1-PS)

(b) Accidental Vulnerability Exploiting

Figure 7: The CPN sub-models.

4.3 Intentional vulnerability exploiting

Figure 7(a) describes the CPN sub-model for intentional vulnerability exploita-
tion, existing defense mechanisms in the system, and system restoration. This sub-
model is a generic model describing system integrity breaches caused by inten-
tional vulnerability exploits. Tokens in the place “Vulnerabilities idle in system”
represents the vulnerabilities that currently exists in the system, but that have not
yet caused a system integrity breach. There is a probability, (1 − PV), that the
system will fail to detect or remove these vulnerabilities, and thereby prevent the
initiation of security attacks. The timed delay from a vulnerability is introduced
into the system until a corresponding attack is initiated, i.e. the delay before the
transition “Attack initiation” fires, represent the time elapsed before an attacker
discovers the vulnerability, and has gained enough knowledge to start exploiting
the vulnerability. This delay may be modeled as the “Learning Attack Phase” intro-
duced in [8].

When an attack has been initiated, either the transition “Disabling attack”, or the
transition “Attack exploits vulnerability” will eventually fire. Which of the transi-
tions that fires depends on whether a safeguard for that particular attack exists.
The variable (PS) models the probability that an existing safeguard manage to
withstand the attack. If a safeguard for a particular vulnerability does not exist
or cannot disable the attack, the attack may exploit the vulnerability. The time an
attacker spends before succeeding with a particular attack, i.e. the stochastic delay
before the transition “Attack exploits vulnerability” fires, may be modeled as the

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 82,
 www.witpress.com, ISSN 1743-3509 (on-line)

10 Safety and Security Engineering

“Standard Attack Phase” described in [8].
When the transition “Attack exploits vulnerability” fires, the attacker has suc-

ceeded with a particular attack and the token will be transferred from the place
“Initiated attacks” to the place “System integrity breaches”.

4.4 Accidental vulnerability execution

Figure 7(b) describes the sub-model for accidental vulnerability execution and
system restoration. This model is an adapted version of the sub-model presented
in the previous section. The model describes accidental events leading to vulner-
ability exploits. Such events may be prevented if an appropriate safeguard exists.
An example of such an event is when user input is not checked for type–errors,
which may lead to inconsistency or erroneous output. The sub-model covers all
types of accidental events, such as stumbling over a network cable, accidentally
turning off the power of a server, and user errors due to misunderstanding etc.

4.5 Simulation of CPN models

By running a large number of simulations of a CPN model one obtain a tight con-
fidence intervals for steady state probabilities. In the hierarchical CPN model this
means quantifying the system integrity of security critical systems. Measures used
for quantification is the mean time to security integrity breach (MTSIB), or the
corresponding measure; mean time to security failure (MTSF), as defined in [3]
and utilized in [7] and [5]. However, in order to simulate the generic CPN model
it must be refined into sub-models representing the level of the data available. In
typical industrial applications, a CPN model usually consists of 10-100 different
sub-models with varying complexity [12]. The next step is to assign probability
distributions or deterministic values for all the timed transitions in the model. In
some cases this task will be straight-forward, for example when there exists empir-
ical data for certain kind of breaches on the system top level. However, in most
cases the hierarchical sub-model must be refined into many subsequent places and
transitions for which it is possible to approximate the timed delay, either by using
empirical data, expert opinions, or a combination of both.

5 Conclusion and further work

The paper presents an approach for quantifying operational system integrity of
security critical systems using CPN. The approach is based on the initial concepts
of [3], and the suggestions provided in [4,5,8]. The extended security and depend-
ability framework covers not only breaches caused by users and non-users, but
also traditional dependability failures. CPN has the ability to distinguish between
different sources of fault introduction, and makes it possible to model each com-
bination explicitly. This is necessary in order to quantify system integrity, and to
make use of the available data sources. Another important aspect is the complexity

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 82,
 www.witpress.com, ISSN 1743-3509 (on-line)

Safety and Security Engineering 11

of the model. Using CPN simplifies the structure of the model, even though the
numbers of states derived from the model increases.

Further work will concentrate on constructing an extensive example, and
demonstrate the feasibility of the modeling approach. The model will also be
adapted to be used in connection with subjective expert judgment, as well as pro-
viding an approach for combining empirical and subjective data for predicting
system integrity.

References

[1] ISO 15408: Common Criteria for Information Technology Security Evalua-
tion, 1999. Http://www.commoncriteria.org/.

[2] ISO/IEC 13335: Information Technology - Guidelines for the management
of IT Security. Http://www.iso.ch.

[3] Littlewood, B., Brocklehurst, S., Fenton, N., Mellor, P., Page, S., Wright, D.,
Dobson, J., McDermid J. & Gollmann, D., Towards operational measures of
computer security. Journal of Computer Security, 2, pp. 211–229, 1993.

[4] Ortalo, R. & Deswarte, Y., Experiments with quantitative evaluation tools for
monitoring operational security. IEEE Trans Software Eng, 5(25), pp. 633–
650, 1999.

[5] Madan, B., Vaidyanathan, K. & Trivedi, K., Modeling and quantification of
security attributes of software systems. Proceedings of the International Con-
ference on Dependable Systems and Networks (DSN‘02), 2000.

[6] Wang, D., Madan, B. & Trivedi, K., Security analysis of sitar intrusion toler-
ance system. ACM SSRS’03, 2003.

[7] Singh, S., Cukier, M. & Sanders, W., Probabilistic validation of an intrusion-
tolerant replication system. International Conference on Dependable Systems
and Networks (DSN‘03), eds. de Bakker, J.W., de Roever, W.-P. & Rozen-
berg, G., 2001.

[8] Jonsson, E. & Olovsson, T., A quantitative model of the security intrusion
process based on attacker behavior. IEEE Trans Software Eng, 4(25), p. 235,
1997.

[9] Jonsson, E. & Olovsson, T., On the integration of security and dependability
in computer systems. IASTED Int’l Conf. Reliability, Quality Control and
Risk Assessment, Washington, pp. 93–97, 1992.

[10] Avizienis, A., Laprie, J. & Randell, B., Fundamental concepts of dependabil-
ity, 2001.

[11] Zimmermann, A., Dalkowski, K. & Hommel, G., A case study in modeling
and performance evaluation of manufacturing systems using colored petri
nets. Proc. of the 8th European Simulation Symposium, pp. 282–286, 1996.

[12] Jensen, K., An introduction to the theoretical aspects of coloured petri nets.
Lecture Notes in Computer Science; A Decade of Concurrency, 803, pp. 230–
272, 1993.

[13] R. A. Sahner, A.P., K. S. Trivedi, Performance and Reliability Analysis of
Computer Systems. Kluwer Academic Publishers, 1996.

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 82,
 www.witpress.com, ISSN 1743-3509 (on-line)

12 Safety and Security Engineering

