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Abstract 

For the entire period of recorded time, floods have been a major cause of loss of 
life and property. Methods of prediction and mitigation range from human 
observers to sophisticated surveys and statistical analysis of climatic data. In the 
last few years, researchers have applied computer programs called Neural 
Networks or Artificial Neural Networks to a variety of uses ranging from 
medical to financial. The purpose of the study was to demonstrate that Neural 
Networks can be successfully applied to flood forecasting. 
     The river system chosen for the research was the Big Thompson River, 
located in North-central Colorado, United States of America. The Big Thompson 
River is a snow melt controlled river that runs through a steep, narrow canyon. In 
1976, the canyon was the site of a devastating flood that killed 145 people and 
resulted in millions of dollars of damage. 
     Using publicly available climatic and stream flow data and a Ward Systems 
Neural Network, the study resulted in prediction accuracy of greater than 97% in 
+/-100 cubic feet per minute range. The average error of the predictions was less 
than 16 cubic feet per minute. 
     To further validate the model’s predictive capability, a multiple regression 
analysis was done on the same data. The Neural Network’s predictions exceeded 
those of the multiple regression analysis by significant margins in all 
measurement criteria. 
Keywords:  flood forecasting, neural networks, hydrologic modelling, rainfall/ 
runoff, hydrology, modelling, artificial neural networks. 
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1 Introduction 

One of the major problems in flood disaster response is that floodplain data are 
out of date almost as soon as the surveyors have put away their transits.  
     What is needed in flood forecasting is a system that can be continuously 
updated without the costly and laborious resurveying that is the norm in 
floodplain delineation 
     Even current models that rely on linear regression require extensive data 
cleaning, which is time and data intensive. A new model must be created every 
time there is a change in the river basin. The process is time, labor, and, data 
intensive; and, as a result, it is extremely costly. What is needed is a method or 
model that will do all of the calculations quickly, accurately, using data that 
requires minimal cleaning, and at a minimal cost. The new model should also be 
self-updating to take into account all of the changes occurring in the river basin.  
     With a NN program, a watershed and its associated floodplains can be 
updated constantly using historical data and real-time data collection from 
existing and future rain gauges, flow meters, and depth gauges. The constant 
updating will result in floodplain maps that are current and accurate at all times.  
     Another problem with published floodplains is that they depict only the 100-
year flood. This flood has a 1% probability of happening in any given year. 
While this is useful for general purposes, it may not be satisfactory for a business 
or a community that is planning to build a medical facility for non-ambulatory 
patients. For a facility of this nature, a flood probability of 0.1% may not be 
acceptable. The opposite situation is true for the planning of a green belt, golf 
course, or athletic fields. In this situation, a flood probability of 10% may be 
perfectly acceptable.  
     This paper is an effort to demonstrate the potential use, by a layperson, of a 
commercially available NN to predict stream flow and probability of flooding in 
a specific area. In addition, a comparison was made between a NN model and a 
multiple-linear regression model 

2 Literature 

The term NN is used in this dissertation to represent both the NN and ANN 
programs. 
     Muller and Reinhardt [1] wrote one of the earliest books on NNs. The 
document provided basic explanations and focus on NN modeling. Hertzet al [2] 
presented an analysis of the theoretical aspects of NNs.  
     In recent years, a great deal of work has been done in applying NNs to water 
resources research.  
     Hjelmfelt and Wang [3] used NNs to unit hydrograph estimation. The authors 
concluded that there was a basis, in hydrologic fundamentals, for the use of NNs 
to predict the rainfall-runoff relationship.  
     Huffman [4] presented a paper that suggested that NNs could be applied to 
creating floodplains that could be constantly updated without relying on the 
costly and time consuming existing modeling techniques. 
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     Wei et al [5] proposed using NNs to solve the poorly structured problems of 
flood predictions.  
     Rajurkar et al [6] tested a NN on seven river basins. They found that this 
approach produced reasonably satisfactory results from a variety of river basins 
from different geographical locations... 
     Kerh and Lee [7] describe their attempt at forecasting flood discharge at an 
unmeasured station using upstream information as an input. They discovered that 
the NN was superior to the Muskingum method. 
     Filho and dos Santos [8] applied NNs to modeling stream flow in a densely 
urbanized watershed.  
     Sahoo and Ray [9] described their application of a feed-forward back 
propagation and radial basis NN to forecast stream flow on a Hawaii stream 
prone to flash flooding.  
     Late in this study, a paper by Hsu et al [10] was discovered demonstrating 
that results were dramatically improved by adding the previous day’s stream 
flow or stage level input with the other data. This technique was applied in this 
study. This application resulted in a dramatic improvement of the predictive 
capability of the model. 

3 Methodology 

Current methods of stream-flow forecasting are based on in-depth studies of the 
river basin including (a) geologic studies, (b) topographic studies, (c) ground 
cover, (d) forestation, and (e) hydrologic analysis. All of these are time and 
capital intensive.  
     Several independent variables were considered, and two test bed data sets are 
used, the Drake and Loveland data sets.  
     The Drake measuring station is described as, “USGS 06738000 Big 
Thompson R at mouth of canyon, NR Drake, CO.”  USGS, [11]. Its location is: 
Latitude 40°25'18", Longitude 105°13'34" NAD27, Larimer County, Colorado, 
Hydrologic Unit 10190006. The Drake measuring station has a drainage area of 
305 square miles and the Datum of gauge is 5,305.47 feet above sea level.  
     The Loveland measuring station is described as USGS06741510 Big 
Thompson River at Loveland, CO. USGS [12].  Its location is Latitude 
40°22'43", Longitude 105°03'38" NAD27, Larimer County, Colorado, 
Hydrologic Unit 10190006.  Its drainage area is 535 square miles and is located 
4,906.00 feet above sea level. The records for both sites are maintained by the 
USGS Colorado Water Science Center USGS, [11, 12]. The following data was 
used in this model: 

Tmax is the maximum measured temperature at the gauging site.  
Tmin is the lowest measured temperature at the gauging site. 
Tobs is the current temperature at the gauging site.  
Tmean is the average temperature during the 24-hour measuring period   
Cdd are the Cooling Degree Days, an index of relative coldness.  
Hdd are the Heating Degree Days, an index of relative warmth.  
Prcp is the measured rainfall during the 24-hour measuring period.  
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Snow1 is the measured snowfall during the 24-hour measuring period.  
Snwd is the measured depth of the snow at the measuring site.  
The output variable is the predicted flow level.  

     This is the actual data collected by the meteorological stations. The samples 
for each site are more than 3000 data sets which are more than enough to (a) run 
a NN model, (b) to test it, and (c) to validate it. For the same data, a linear 
regression model using SPSS was run. The same variables dependent and 
independent were considered (Mazouz [13]).  
     The Ward Systems product, selected for the research, is the NeuralShell 
Predictor, Rel. 2.0, Copyright 2000. The following description was taken directly 
from the Ward Systems website, www.wardsystems.com (Ward Systems Group 
[14]). 
     The methods of statistical validation to be used in this paper are as follows:  
R-Squared, Average Error, and Percent in Range. 

4 Analysis and presentation of findings 

The following is a topographic map of the Big Thompson canyon. It is a narrow, 
relatively steep canyon. 

 

 

Figure 1: Topography of the Big Thompson Canyon (USGS [15]). 

     The historical measurements of (a) precipitation, (b) snowmelt, (c) 
temperature, and (d) stream discharge are available for the Big Thompson 
Watershed as they are usually available for most watersheds throughout the 
world. This is in contrast to data on (a) soil characteristics, (b) initial soil 
moisture, (c) land use, (d) infiltration, and (e) groundwater characteristics that 
are usually scarce and limited. 
     For this study, six climatic observation stations were used for the input 
variables. For the purposes of building a model to demonstrate the feasibility of 
using the commercially available NN, all six stations’ data were used for the 
independent variables. The description and locations of the stations are as 
follows. 

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2007 WIT PressWIT Transactions on Ecology and the Environment, Vol 104,

172  River Basin Management IV



Coopid.  Station Name   Ctry. State County   Climate Div. Lat./Long.    Elevation 
051060  Buckhorn Mtn 1E  U.S.  CO  Larimer    04         40:37/ -105:18       2255.5 
052759   Estes Park              U.S.  CO  Larimer     04         40:23/-105:29        2279.9 
052761  Estes Park 1 SSE   U.S.  CO  Larimer     04        40:22/-105:31        2372.9 
054135    Hourglass Res.      U.S.  CO  Larimer    04        40:35/-105:38         2901.7 
055236  Loveland 2N          U.S.  CO   Larimer   04         40:24 /-105:07        1536.2 
058839  Waterdale               U.S.  CO   Larimer   04         40:26/ -105:13        1594.1 
NCDC [14] 

 
     The period of time for the historical data selected was from July 4, 1990, 
through May 7, 1998, a total of seven years, ten months and three days. 
     One extreme event occurred during this time period that was well out of the 
range of data available and was not adequately predicted by this NN. It is well 
known that a NN cannot predict an event that it has never seen before in the 
training data. There was no repeat of the magnitude of this event during the time 
period under study.  
 

 

Figure 2: Drake, final model, actual versus predicted. 

 

Figure 3: Loveland, final model, actual versus predicted. 

     The R-Squared results for the Drake and Loveland measuring stations were 
0.9091 and 0.9671. 
     The Average Error for the Drake and Loveland measuring stations are 15.7 
cfm and 11.56 cfm.  
     The Correlation values for both the Drake and the Loveland measuring station 
for this model are very good at 0.9534 and 0.9834. 
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Figure 4: Drake, final model, R-squared. 

 

Figure 5: Loveland, final model, R-squared. 

 

Figure 6: Drake, final model, average error. 

 

Figure 7: Loveland, final model, average error. 
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Figure 8: Drake, final model, correlation. 

 

Figure 9: Loveland, final model, correlation. 

 

Figure 10: Drake, final model, percent in range. 

     The Drake and Loveland measuring stations’ Percent in Range ended the run 
at values of 98.1 and 97.3.  
     The following Multi linear regression models were created and provided by 
Dr. Kadar Mazouz of Florida Atlantic University (Mazouz [13]). 
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Figure 11: Loveland, final model, percent in range. 

Table 1:  Drake, model summary (i). 

Model R R Square Adjusted R Square Std. Error of the Estimate 
1 .916(a) .838 .838 29.0311 
2 .918(b) .842 .842 28.7095 
3 .918(c) .843 .843 28.6109 
4 .919(d) .845 .845 28.4290 
5 .920(e) .846 .845 28.3747 
6 .920(f) .847 .846 28.3096 
7 .921(g) .849 .848 28.1527 

(a) Predictors: (Constant), Preflow. 
(b) Predictors: (Constant), Preflow, Tobs3. 
(c) Predictors: (Constant), Preflow, Tobs3, Prcp2. 
(d) Predictors: (Constant), Preflow, Tobs3, Prcp2, Prcp4. 
(e) Predictors: (Constant), Preflow, Tobs3, Prcp2, Prcp4, Tmax3. 
(f) Predictors: (Constant), Preflow, Tobs3, Prcp2, Prcp4, Tmax3, Prcp5. 
(g) Predictors: (Constant), Preflow, Tobs3, Prcp2, Prcp4, Tmax3, Prcp5, Snow5. 
(h)  Dependent Variable: OUTPUT. 
 
     A stepwise multi-linear regression model was generated for both data sets, 
Drake and Loveland. Being a multiphase process, it stopped after the seventh 
model. It gave an R-square of 0.0849, which is less than the NN Model 
generated for the Drake Data sets. 
     Actually, the independent variables that contributed the most to the variability 
of the output are Preflow, TOBS3, Prcp2, Prcp4, Prcp5, and Snow5. Their 
corresponding coefficients in the model are:  
     On the other hand, as for Loveland, the stepwise Multi-linear regression 
model for Drake was generated in eight iterations. It gave an R-square of 0.80, 
which is less than the R-square generated for the Loveland data using NNs. 
     The independent variables that contributed the most to the variability of the 
output are Preflow, OFestes, Prcp3, PrcpA, Tmin3, Snow A, Tobs A. Their 
corresponding coefficients in the model are:  
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Table 2:  Loveland, summary (i). 

Model R R Square Adjusted R Square Std. Error of the Estimate 
1 0.881(a) 0.777 0.776 22.06113 
2 0.891(b) 0.793 0.793 21.23824 
3 0.892(c) 0.796 0.796 21.09537 
4 0.893(d) 0.798 0.797 21.01388 
5 0.894(e) 0.799 0.798 20.95246 
6 0.895(f) 0.801 0.800 20.85033 
7 0.896(g) 0.803 0.801 20.80284 
8 0.896(h) 0.803 0.802 20.76851 

(a) Predictors: (Constant), Preflow. 
(b) Predictors: (Constant), Preflow, OFEstes. 
(c) Predictors: (Constant), Preflow, OFEstes, Prcp3. 
(d) Predictors: (Constant), Preflow, OFEstes, Prcp3, Prcp_A. 
(e) Predictors: (Constant), Preflow, OFEstes, Prcp3, Prcp_A, Tmin3. 
(f) Predictors: (Constant), Preflow, OFEstes, Prcp3, Prcp_A, Tmin3, Tmax1. 
(g) Predictors: (Constant), Preflow, OFEstes, Prcp3, Prcp_A, Tmin3, Tmax1, Snow_A. 
(h) Predictors: (Constant), Preflow, OFEstes, Prcp3, Prcp_A, Tmin3, Tmax1, Snow_A, Tobs_A. 
(i) Dependent Variable: LvdFlow 

5 Summary and conclusions 

In this study, a daily rainfall-runoff model for two flow-measuring stations, 
Drake and Loveland, on the Big Thompson River in Colorado, was developed 
using the NeuralShell Predictor. In developing this model, the following topics 
were addressed: (a) the use of a commercially available NN in the development 
of the daily rainfall, snowmelt, temperature-runoff process; (b) the evaluation of 
the reliability of future predictions for this NN program; and (c) the comparison 
of results of the to a Linear Multiple Regression model developed by Mazouz 
[13]. 
     For the Big Thompson River, the NN provides better than 97 % predictions 
within a plus or minus 100 cfm range. When comparing the results of the NN to 
those of the linear multiple regression analysis, it is apparent that the NN 
provides a clearly superior predictive capability. 
     Although the network trained in this study can only be applied to the Big 
Thompson River, the guidelines in the selection of the data, training criteria, and 
the evaluation of the network reliability are based on statistical rules. Therefore, 
they are independent of the application. These guidelines can be used in any 
application of NNs to other rivers. 
     This model was developed and tested for the Big Thompson River. The Big 
Thompson River is mainly driven by snowmelt with occasional heavy rains 
adding complexity. The NN modeling should be tested in other watersheds with 
different size drainage areas, watershed characteristics, and climatic conditions. 
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