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Abstract 

This study presents the developed algorithm for assessment and updating 
estimates of the parameters in mathematical models of device or systems ageing 
process (that is characterized by increasing failure rate) with respect to prior 
information and obtained observations (failure data). The proposed algorithm is 
based on a modified application of the Bayesian approach (BA). In the paper 
some ways for the forecasting of residual lifetime with respect of allowed risk 
margins using obtained updated mathematical model of increasing failure rate 
are presented. 
Keywords:  degradation, ageing, increasing failure rate, Bayesian approach. 

1 Introduction 

In this research work mathematical models of complex devices or system ageing 
(or degradation) processes are analyzed. In engineering, ageing is understood as 
a process during which characteristics (physical, mechanical or chemical 
properties) of systems, structures or components are changing in time, i.e., 
technical devices lose the ability to perform their designed functions 
(dependability of devices is decreasing). In order to avoid problems during 
device operation time it is important to evaluate the effect of the ageing 
phenomena. Therefore mathematical models that describe the ageing phenomena 
are necessary. Contribution of a probabilistic assessment of the ageing process is 
significant to strategic planning of devices control. Performing a reliability 
analysis, it is important to not only test whether the current condition of device 
corresponds to the safety requirements (such as that denoted by technical 
specifications or regulatory institutions) but also to evaluate residual lifetime 
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with respect to its ageing process. These problems are relevant for the devices’ 
lifetime extension. For instance, unfortunately, at present many power plants are 
reaching end-of-life status and not enough new plants are expected to be online 
any time soon. Operators want to prolong their plant’s safe and cost-effective 
operation for as long as possible. Therefore problem of lifetime extension is 
especially significant.  
     So, the situation when failure rate of devices or systems begins to increase in 
face of ageing phenomena is common in practice. This is typical of devices 
whose lifetime is reaching end-of-life status, or devices that operate under 
extreme conditions, for instance, safety system operation during accidents.  

2 System ageing process characterized by increasing failure 
rate 

The operation time of device can be divided into three parts (Figure 1): burn-in 
period (when failure rate is decreasing); period of useful life (characterized by 
constant failure rate); and wear-out (or so called ageing) period (when the failure 
rate is increasing): at time moment t0 it started, the critical value of increasing 
failure rate is marked as cr and the critical value is reached at the time 
moment tcr. 
 

 

Figure 1: The bathtub curve. Hypothetic failure rate versus time. 

     It is evident that dependability of a considered device (or software, etc.) is 
decreasing in the third (ageing) period because of more frequent failures. So it is 
important  
 to determine whether the ageing period is started for an analyzed device 

(there are some tests to determine whether discrete events in a process have 
a trend: Laplace test or so called centroid test)  [1], inversion test  [2], two-
cells test  [3]); 

 to develop a mathematical model for device ageing period that enables to do 
point and interval forecasts of residual lifetime tcr for the device (i.e., the 
failure rate does not exceed the allowed critical value cr). 
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     The lifetime distribution of a considered system is selected according to the 
type of failure rate trend. Usually lifetime distributions are used which are 
characterized by increasing (i.e., “↑”) failure rate function or bath-tube (i.e., “U”) 
shaped failure rate function: Weibull, Birnbaum-Saunders (↑); Generalized 
Modified Weibull Exponentiated Weibull, Additive Weibull, Modified Weibull, 
Modified Weibull Extension (↑ and U) and others. The most popular 
probabilistic models for the lifetime are presented in Marshall and Olkin  [4], 
Blischke and Murthy  [5], Limnios and Nikulin  [6], Gnedenko el al.  [7], Rausand 
and Høyland  [8], Murthy et al.  [9], Crow and Feinberg  [10], Dodson and Nolan 
 [11], Ireson et al.  [12] researches. In the reliability analysis of a technical device, 
technical systems, software (Limnios and Nikulin  [6], Yang and Xie  [13], Pham 
 [14], Huang et al.  [15], Ravishankera et al.  [16] researches) nonhomogeneous 
Poisson process (NHPP) is used for the failure data in case of time t dependent 
failure rate (t). NHPP case is analyzed in more details in this work.  
     The next step of a modeling is the evaluation of the parameters of the chosen 
model. The most popular Maximum Likelihood Estimation (MLE) is limited 
because prior information about parameters is not taken into account. Performing 
safety analysis of devices, the typical situation is: quite enough precise prior 
information about operation of similar devices, lack of statistical data (limited 
measurements – too expense, no possibilities to do it, etc.). For this purpose the 
algorithm based on Bayesian approach is proposed for the calculation of 
parameter estimates. BA application complicates in case of non-stationary 
processes (NP) (for instance, ageing process) analysis, because measurements or 
observations obtained in different time moments represent the other state of the 
system. In this research the modification of BA application that allows taking 
into account trends of inconstant characteristics (for instance, increasing failure 
rate) of a non-stationary process is presented. 

2.1 Modified application of Bayesian approach 

It is assumed that a non-stationary process is described by inconstant 
characteristic . For instance, this characteristic is an increasing failure rate in 
analysis of device operation during its ageing period. Measurements (or 
observations) of characteristic  are denoted with yi, i = 1, …, n. Prior 
information for the BA application to obtain parameter estimates of non-
stationary process mathematical model is required: 
 distribution of statistical data, the probability density function (pdf) is 

p(y, η1, ..., ηm); 
 form of the trend function of the system’ dynamics describing characteristic 
ξ as a function of some factors F1, …, Fr and parameters θ1, …, θs: f(θ1, …, 
θs, F1, …, Fr). For instance, it can be an exponential, polynomial, linear 
function, etc. The expected value of random non-stationary characteristic ξ 
satisfies requirement  

 
 Eξ = f(θ1, …, θs, F1, …, Fr). (1) 
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     Note that parameters η1, ..., ηm of the distribution (likelihood function) of 
statistical data are expressed in respect of ξ trend function defined by eq. (1), i.e., 
expected value must satisfy eq. (1). In case, when likelihood function depends on 
more than one parameter requirement defined by eq. (1) is insufficient to express 
parameters η1, ..., ηm in respect of parameters θ1, …, θs. In this case it is 
necessary to have information about variance or other statistical moments of the 
data distribution (system of m equations is required). In general, variance or 
other moments may be unknown (assumed as random variables) or inconstant 
with known trend functions as expected value (eq. (1)). 
     In respect of the uncertainty of prior information, maybe noisily 
measurements and etc., the parameters θ1, …, θs of the considering model are 
assumed as random independent variables with a priori known their distributions 
(otherwise non-informative, for instance, a uniform distribution or Jeffreys 
distribution  [17] can be used as prior; note that their prior probability density 
functions (pdfs) are pl(xl), l = 1, …, s). BA is applied to update random unknown 
parameters θ1, …, θs of the function defined by eq. (1). 
     Assume that distribution of statistical data yi, i = 1, …, n, is known, i.e., the 
likelihood function – L(·) that satisfies eq. (1).  The posterior multivariable 
density function is obtained by the application of Bayesian formula for this 
information 
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i = 2, …, n, Rl – range (set of all possible values) of parameter θl, l = 1, …, s. 
Posterior pdf defined by eq. (2) is used to obtain: 
 Bayesian point estimate (the expected value of posterior distribution) of 

parameter θl is defined as  
 

 .,...,1,d...d...d),...,|,...,,...,(......ˆ

1

111 nixxxyyxxxx
R R R

slisllli

l s

       (3) 

 

 The interval estimate – confidence interval:  symmetric (classical case), 
asymmetric (the beginning (or the ending) of this interval has higher 
importance for reliability analysis) or credible interval (the narrowest 
confidence interval) so called Bayesian interval estimate. 

     The classical application of BA requires information about likelihood (and 
prior pdfs of random parameters of likelihood). In analysis of non-stationary 
process trend function of characteristic  (that describes non-stationary process) 
must be known for the modified application of BA. Otherwise non-informative 
flexi function as polynomial function could be used. On the other hand Least 
Squares Method LSM is used in regression analysis for the fitting data (this 
method required at least s observation for s parameters estimates; prior 
information about data distribution and prior pdfs of considered random 
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parameters is not used by  applying LSM). BA allows updating estimates of all 
parameters in the model with a single new obtained observation. MLE provides 
parameters estimates of the chosen statistical model. If a uniform prior 
distribution is assumed for the parameters, the maximum likelihood estimate 
coincides with the most probable values thereof, i.e., MLE and (classical) BA 
estimates are equal. But this property is not held in case of non-stationary 
process analysis. 

2.2 Failure rate trend updating in case of NHPP 

Assume that system ageing process has started already, and it is characterized by 
increasing failure rate. Device failure data (kj, tj), j = 1, 2, ..., n, ki – failure 
number per time unit (tj-1 , tj]: tj – tj-1 = 1. The failure number per time unit 
(marked as k) follows Poison distribution with time dependent parameter that is 
expressed as function (t) = (t, 1, ..., s), i.e., nonhomogeneous Poisson 
process is analyzed.  
     Assuming that a trend function of increasing failure rate is known (for 
instance, linear, exponential, etc.), the parameters 1, ..., s are assumed as  
random variables with known prior pdfs pl(xl), l = 1, …, s. With respect to 
available failure data the posterior pdf of random parameters is obtained by 
Bayesian approach (its modified application) 
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tj = j (i.e., discrete time), 
Rl – range (set of all possible values) of parameter θl, l = 1, …, s. 
     Note. The modified application of BA could be used for the updating of 
parameters pdfs when increasing failure rate depends on more than one (time t) 
factors as well.  

Bayesian point estimate (expected value) of parameter l, l = 1, 2, ..., s, 
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     The random parameters of the trend of failure rate are replaced with updated 
Bayesian point estimates. 

2.3 The forecast of the residual lifetime in respect of increasing failure rate 

If any component of system is under degradation, the user is interested in how 
long system maintenance corresponds to the safety margins. The dependability 
level could be defined using critical (maximum allowed) value of increasing 
failure rate. For analyzed device (or system) critical value cr is defined in 
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technical specifications or determined by experts. The time moment tcr that 
corresponds to the value cr is called residual lifetime.  
     In the common case it is assumed that trend function of increasing failure rate 
depends on time t and s parameters 
 

 ),...,,( 1 st   . (6) 
 

     This section analyses the problem of device residual lifetime evaluation. Two 
algorithms for the solution of this problem are proposed. 
     I. The expected value of residual lifetime tcr can be estimated solving 
equation 
 

 )ˆ,...,ˆ,( 1 snncrcr t   , (7) 
 

here 
in̂  – Bayesian point estimate of parameter θi , i = 1, ..., s, obtained by 

formula (5). The expected value of the residual lifetime is a poor estimate for 
systems with high safety requirements.  
 

 

Figure 2: Increasing failure rate in the period of ageing. 

     II. a) The failure rate (t) (defined by equation (6)) is function of random 
variable(s) θ1, …, θs, its pdf is obtained using the posterior pdfs of θi, i = 1, ..., s, 
and transformation formulas (some cases are presented in the Table 1). 

Table 1:  Probability density functions f(y | k1 , ..., kn) of the failure rate (t). 

Expression of (t) 
( t – time ) 
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Pdf of failure rate (t) 
( t – time )

linear 
(t) = t 

 







t

y

t
yf 1
)(  

quadratic 
(parabolic) 
(t) = t2 

 







22

1
)(

t

y

t
yf   

exponential 
tt  

0e)(     









t

y

yt
yf

00

ln11
)(





 

Note: (·) =  (x, k1 , ..., kn) – the posterior pdf of random parameter defined by formula (4),  
 0  – the value of known constant failure rate in period of the device's useful life. 

Interval 
estimate: 

asymmetric or 
credible 
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     For a given fixed time moment t* the probability that increasing failure rate 
would not exceed the critical value cr can be easily calculated with 
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     II. b) On the other hand, it is relevant to evaluate the residual lifetime of the 
analyzed device or system with respect of allowed risk level expressed by critical 
value of failure rate. The mean value of the residual lifetime as estimate is not 
precise enough. Actually, the lifetime tcr is a function of the random variables 
θ1, …, θs as well, defined by equation in an implicit form 
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     The pdf of tcr is obtained by using the posterior pdfs of θi, i = 1, ..., s, and 
transformation formulas (some cases are presented in the Table 2). 

Table 2:  Probability density functions g(z | k1 , ..., kn) of the residual lifetime 
tcr. 

Trend 
function (t) 
( t – time ) 

Random 
parameter 

Lifetime tcr as 
function of 

random variable 
Pdf of the residual lifetime tcr 
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Note:  (·) =  (x, k1 , ..., kn) – the posterior pdf of random parameter defined by formula (4), 
 0 – the value of known constant failure rate in period of the device's useful life. 
 

     The pdf g(z), that contains information about observations and prior 
distributions of random parameters, gives point and interval estimates of  
lifetime tcr. In point of interval estimate the construction of asymmetric 
confidence interval (with more attention to the beginning of confidence interval, 
see Figure 3) or credible interval has more advantages then classical confidence 
interval with equal-tails. For instance, credible interval is shortest of all 
confidence intervals and contains the most probable value of the residual 
lifetime.  

2.4 Numerical experiment: NHPP with exponentially increasing failure rate 

Assume that a failure rate trend is exponential, i.e., tt  
0e)(   , 0 – known 

constant failure rate in a period of device useful life. Failure data kj (failure 
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number in the jth interval of time) were simulated by a Poison distribution with 

parameter jtt  
0

*

e)(   ,  * = 0,08, 0 = 1, tj = j = 10, ..., 20 (Maple v.11). For 

the numerical experiment the parameter θ is assumed as a random variable with 
prior exponential distribution (with parameter  = 10). Bayesian point estimate 
of random parameter θ is 
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n = 10, ..., 20. The convergence of Bayesian point estimate to the true value is 
illustrated in Figure 3.  
     Alternative methods for the estimation of the parameter in the model with 
known trend function are least square method (LSM) and maximum likelihood 
estimation (MLE). LSM and MLE estimates of the parameters are presented in 
Figure 3 as well. Note, in this case MLE and BA (with non informative prior) 
estimates are not equal. The following mean squared errors were calculated: 
0.00072 (BA), 0.00159 (MLE), 0.00137 (LSM).  
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Figure 3: The point estimates of random parameter θ (n = 10, …, 20). 

 
     Obviously, if the set of observations is quite big all methods give quite 
precise estimates of parameters. BA power is the combination of prior (reliable) 
information and observations (likelihood as well) in the case of few observations 
(i.e., in the beginning of observation period).  
     The pdf of the failure rate (t) is obtained using the posterior pdf of the 
parameter  and the formula given in Table 1 
 

 * = 0.08 
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n = 10, …, 20, c – normalizing constant, t – time.  
     If the critical value of an increasing failure rate is determined, for instance, cr 
= 10, the probability that the increasing failure rate will not exceed the critical 
value cr for a given fixed time moment t* (for instance, t*=24) is 0,935 (obtained 
using formula (8)). The pdf of the residual lifetime tcr is obtained using the 
posterior pdf of the parameter  and formula given in Table 2 
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n = 10, …, 20, c – normalizing constant.  
 

 

Figure 4: The pdf g(z | k10, ..., k20 ) of the residual lifetime tcr
. 

     The graph of obtained pdf g(z | k10 , ..., k20) is presented in Figure 4. (cr = 10). 
95% asymmetric confidence interval of tcr is [22.84; 37.38], i.e., probability 
P(z < 22.84) = 0.02 and probability P(z > 37.38) = 0.03). The mean value of the 
residual lifetime 11.29ˆ crt , mode (the most probable value) – 27.32. 

     A detailed analysis was performed for the evaluation of parameters in a 
classical nonhomogeneous Poisson process (failure rate depends just on time t) 
model. The proposed algorithm based on BA modified application is suitable as 
well in case when failure rate depends on more factors. 
     Performing testing of technical devices (for instance, diesel generators system 
– part of the emergency power supply system of power reactors  [18] or software 
[1, 19], a Binomial distribution B(N, p) (N – number of trials, p – failure 
probability) is used as failure distribution. When failures occur more and more 
frequently a Binomial distribution can be modified: failure probability p is 
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replaced with an increasing function, for instance, p(t) that depends on time t, or 
other factors. In this way the Binomial distribution is an appropriate model for 
the reliability analysis of the testing devices or systems that is in the period of 
ageing. Estimates of model parameters can be obtained (and updated) by 
modified application of BA as well. 

3 Results and conclusions 

This paper presented the developed algorithms (based on Bayesian approach) for 
the estimation of parameters in mathematical models of non-stationary processes 
when changes of the process are described by characteristics which means are 
defined by prior known functional dependencies (for instance, using linear, 
polynomial, exponential and other trend functions). 
     In case of nonhomogeneous Poisson process, the developed algorithm based 
on the modification of Bayesian approach application provides obtaining 
probability distributions of random parameters of system failure rate function.  
 The cases of increasing failure rates with linear, parabolic and exponential 

trend functions were analyzed. In the paper illustration of the developed 
algorithm applicability is presented by numerical experiment: in case when 
ageing process is characterized by increasing failure rate with prior known 
trend; it was shown convergence of Bayesian point estimate of parameter of 
failure rate trend function; obtained results were compared with the ones 
calculated using least squares method (LSM) – sum of errors squares of 
LSM is approximately twice bigger than the sum of errors squares of BA. 

 The algorithm for the assessment of residual lifetime of devices with 
increasing failure rate (i.e., forecast how long safe operation of device is 
possible with set dependability level) was developed. 
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