
Application of particle swarm optimization to
the item packing problem

Y.-B. Shin & E. Kita
Graduate School of Information Science, Nagoya University, Japan

Abstract

The item packing problem is a class of optimization problems which involve
attempting to pack items together inside a container, as densely as possible without
the item overlap. This research focuses on the application of Particle Swarm
Optimization (PSO) to the item packing problem in the two-dimensional region.

PSO has the potential solutions of the problem as particles. Particles in the
swarm are updated according to the update rule with the velocity and position
vectors. The position vectors of the item centers are taken as the design variables.
The total number of items is maximized when all items are included inside a
container without the item overlap. In the original PSO, the particle position vector
is updated with the best position in all particles; i.e., global best position, and the
local best position in previous positions of each particle; i.e., local best position.
The present PSO algorithm utilizes, in addition to them, the second best position
in all particles; i.e., global second-best position.

In the numerical example, the present algorithm is applied to the item packing
problem within the two-dimensional region. The region figure is not regular and
the square items are packed in the region. The comparison of the original and the
present PSOs show that the present algorithm can find a better solution than the
original PSO.
Keywords: particle swarm optimization, item packing problem, global best
position, second global best position.

1 Introduction

Evolutionary computations are techniques implementing mechanisms inspired
by biological evolution such as reproduction, mutation, recombination, natural
selection and survival of the fittest; Genetic Algorithms [1–3], Simulated
Annealing [4], Evolutionary Programming [5], Genetic Programming [6, 7],
Particle Swarm Optimization [8, 9] and so on.

Computer Aided Optimum Design in Engineering XII 245

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 125, © 201 WIT Press2

doi:10.2495/OP120211

Genetic Algorithms (GA) [1–3] is very popular algorithm in the evolutionary
computations. In GA [1–3], a population of chromosomes of candidate solutions
to an optimization problem evolves toward better solutions by applying the genetic
operators such as selection, crossover, mutation and so on. On the other, Genetic
Programming [6, 7] and Grammatical Evolution [10–12] are designed for the
different object. Their object is to find function representations for the unknown
data sets and computer programs that perform a user-defined task. Particle
Swarm Optimization (PSO), which has been presented in 1995 by Kennedy and
Eberhart [8], is based on a metaphor of social interaction such as bird flocking
and fish schooling. PSO is a population-based optimization algorithm, which
could be implemented and applied easily to solve various function optimizations
problem, or the problems that can be transformed to the function minimization or
maximization problem.

In this study, we will apply PSO for solving two-dimensional packing problems.
Packing problems are a class of optimization problems in mathematics which
involve attempting to pack objects together (often inside a container), as densely
as possible. There are many variations of this problem, such as two-dimensional
packing, linear packing, packing by weight, packing by cost, and so on. We focus
on the two-dimensional packing problems. Popular problems in two-dimensional
packing are to packing circles or squares in a circle or a square. The problems are
studied analytically and the maximum numbers of items are determined [13–15].
The application of PSO for solving packing problem has been presented by some
researchers [16–19]. In this study, we consider that the packing regions have the
arbitrarily shaped region and then, same items are packed in the region without
their overlap. The design objective is to maximize the total number of the items
packed in the region without the item overlap. The position vectors of the item
centers are taken as the design variables. The problem is solved by the original and
the present PSOs. In the PSO, the potential solutions of the optimization problem
to be solved are defined as the particle position vectors. Then, the particle positions
are updated by PSO update rules. In the original PSO, the particle position vector
is updated by the best position of all particles; global best position, and the local
best position in previous positions of each particle; personal best position. The
improved PSO utilizes, in addition to them, the second best position of all particles;
global second-best position [9].

The remaining part of this paper is organized as follows. The PSO algorithms
and the optimization problem are explained in section 2 and 3, respectively. In
section 4, the packing problem in two-dimensional regions is solved. Finally, the
conclusions are summarized again in section 5.

2 PSO algorithms

2.1 Update rule of original PSO

PSO algorithm determines the potential solutions of the optimization problem
as the swarm of the particles. Each particle in the swarm has a position vector

246 Computer Aided Optimum Design in Engineering XII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 125, © 201 WIT Press2

xi(t) (i = 1, 2, . . . , N) and a velocity vector vi(t) in the search space at time
t. The particle position vector is defined as the set of the design variables of the
optimization problem. Each particle has memory and therefore, can remember the
best position in search space it ever visited. The satisfaction of the particle i for
the design objective at time t is estimated by the objective function or the fitness
function f(xi(t)).

The position at which each particle takes the best fitness function is known as
the personal best position xpbest

i (t) and the overall best out of all particles in the
swarm is as the global best position xgbest(t). In the original PSO, the velocity and
position vectors of the particle i are updated according to the following formulas

xi(t + 1) = xi(t) + vi(t + 1) (1)

vi(t + 1) = w · vi(t) + c1 · R1 · {xpbest
i (t) − xi(t)}

+ c2 · R2 · {xgbest(t) − xi(t)} (2)

where w is the inertia weight, c1 and c2 are acceleration coefficient, and t is the
iteration time. Besides, R1 and R2 are random numbers in the interval [0, 1].

The inertia weight w governs how much of the velocity should be retained from
the previous time step. Generally the inertia weight is not fixed but varied as the
algorithm progresses. The inertia weight w, in this study, is generally updated by
self-adapting formula as

w = wmax − (wmax − wmin) · t

tmax
(3)

where the parameter wmax and wmin denote the maximum and minimum inertia
weight, respectively. The parameter t and tmax are the iteration step and the
maximum iteration steps in the simulation, respectively.

The parameters c1 and c2 determine the relative pull of xpbest
i (t) and xgbest(t).

According to the recent work done by Clerc [20], the parameters are given as

c1 = c2 = 1.5. (4)

2.2 Update rule with global second-best position

The original PSO have no handling mechanism for avoiding the convergence to
the local optima. Therefore, the new update rule is introduced in this section.

Each particle has three memories and thus, can remember, the global best
position xgbest(t), the local best position xpbest

i (t), and the second global best
position xsgbest(t). The use of the second global bestposition xsgbest(t) attempts

Computer Aided Optimum Design in Engineering XII 247

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 125, © 201 WIT Press2

to search diversity and change movement of particles. The velocity and position
vectors are updated according to the following formulas.

xi(t + 1) = xi(t + 1) + vi(t + 1) (5)

vi(t + 1) = w · vi(t) + c1 · R1 · {xpbest
i (t) − xi(t)}

+ c2 · R2 · {xgbest(t) − xi(t)}
+ c3 · R3 · {xsgbest(t) − xi(t)} (6)

where w is the inertia weight, c1, c2 and c3 are acceleration coefficient, and t is
the iteration time. Besides, R1, R2 and R3 are random numbers distributed in the
interval[0, 1]. The parameter c1 and c2 are taken as the same values in the original
PSO; c1 = c2 = 1.5. The parameter c3 is determined from some numerical
experiments, which is given as c3 = 1.9.

2.3 Algorithm

PSO share the information of xpbest
i , xgbest and xsgbest. Obviously, xsgbest is

worse than xgbest. If only equation (6) is used for updating particle velocity
and position vectors, the results must be worse than that by the original PSO.
Therefore, the present algorithm uses both update rules; equations (2) and (6). The
switching of the update rules (2) and (6) is controlled according to the probability
Ps. The process is as follows:

1. Initialize the position and velocity vectors of particles with random numbers.
2. Set t = 1.
3. For i = 1, 2, · · · , N :

(a) Evaluate fitness functions f(xi(t)) for the particle i.
(b) If f(xi(t)) > f(xpbest

i), set xpbest
i = xi(t).

4. Find the first- and second-best particles x1 and x2 among xgbest, xsgbest

and xi(t) (i = 1, 2, . . . , N).
5. If x1 > xgbest, set xgbest = x1.
6. If x2 > xsgbest, set xsgbest = x2.
7. Generate random number r in the interval[0, 1].
8. If r > Ps, update the velocity and position vectors of all particles according

to equations (1) and (2), respectively.
9. If r ≤ Ps, update the velocity and position vectors of all particles according

to equations (5) and (6), respectively.
10. Set t = t + 1 and go to step 3 if t ≤ tmax.

3 Packing problem

3.1 Optimization problem

The packing problem can be formulated to maximize the number of items N
included into a two-dimensional polygonal region P .

248 Computer Aided Optimum Design in Engineering XII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 125, © 201 WIT Press2

The objective function is defined as follows.

max z (7)

The design variables vector is defined as the set of the center position vectors of
all items as follows.

xi = {p1x, p1y, · · · , pk
x, pk

y, · · · , pz
x, pz

y}T (8)

where the vector {pk
x, pk

y} denotes the center position vector of the item k,
The constraint conditions are as follows.

g1(k, P) = 0 (9)

g2(k, l) = 0 (10)

0.5w ≤ pk
x ≤ W − 0.5w (11)

0.5h ≤ pk
y ≤ H − 0.5h (12)

where k = 1, 2, · · · , z; l = 1, 2, · · · , z. The parameters w and h are item sizes, and
W and H are feasible space sizes. The function g1(k, P) estimates the inclusion
of the item k in the region P , which is defined as follows:

g1(k, P) =

{
0 The item k is included in the region P .

1 The item k is not included in the region P .
(13)

The function g2(k, l) estimates the overlap between the item k and the item l,
which is defined as follows:

g2(k, l) =

{
0 The item k and l are not overlapped.

1 The item k and l are overlapped.
(14)

3.2 PSO implementation

When the number of the items z is given, PSO solves the item packing problem
within the packing region without violating the constraint conditions. In the
optimization problem to be solved by PSO, the fitness function is defined as
follows.

f(xi) =
1

1 +
∑z

k=1

{
g1(k, P) +

∑z,k �=l
l=1 g2(k, l)

} (15)

3.3 Optimization process

The process of the present algorithm is shown in Fig.1 and summarized as follows.
1. z = 0.
2. Set the threshold Ps and the maximum step size tmax.

Computer Aided Optimum Design in Engineering XII 249

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 125, © 201 WIT Press2

Figure 1: Flow chart of the parking problem by using improved PSO.

3. Update the item number by z = z + 1.
4. Perform PSO algorithm:

(a) t = 0
(b) Initialize a particle population with random position and velocity

vectors.
(c) Evaluate the fitness function for each particle f(xi).
(d) Estimate the xpbest

i , xgbest and xgsbest.
(e) If f(xgbest) = 0, go to Step 3.
(f) Generate the random number r in [0, 1].
(g) If r ≤ Ps, update particles by equation (6), otherwise updated by

equation (2).

250 Computer Aided Optimum Design in Engineering XII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 125, © 201 WIT Press2

(h) t = t + 1.
(i) If t ≤ tmax, return to Step 4c.

5. If g1(i, P) = g2(i, j) = 0, return to Step 3.
6. Stop by z = z − 1.

4 Numerical examples

The packing region is shown in Figure 2. PSO parameters are listed in Table 1.
Number of particles and maximum iteration steps are specified as N = 200 and
tmax = 2000, respectively. The other parameters are taken as w = 0.9, c1 = 1.5,
c2 = 1.5, c3 = 1.9, and Ps = 0.1.

The results are shown in Figure 3 and Table 2. The average values of the
maximum item numbers are 12.07 in the original PSO and 13.99 in the present

Table 1: Parameters.

Number of particles N = 200
Maximum iteration step tmax = 2000
Update rules parameters wmax = 0.9, wmin = 0.4

c1 = 1.5, c2 = 1.5, c3 = 1.9

Table 2: Comparison of original and improved PSOs.

Original PSO Improved PSO

Average item number z 11.7 12.864

Average CPU time (seconds) 60.754 80.931

Success rate in z ≥ 13 36.8% 73.8%

Figure 2: Packing region.

Computer Aided Optimum Design in Engineering XII 251

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 125, © 201 WIT Press2

Table 3: Effect of parameter Ps in case B.

Ps 0.1 0.2 0.3 0.4 0.5 0.6

Item number 14.1 13.83 13.97 13.76 13.37 13.39

CPU time (seconds) 66.57 77.00 81.80 85.56 95.18 108.65

Figure 3: Maximum item numbers by original PSO.

Figure 4: Maximum item numbers by present PSO.

252 Computer Aided Optimum Design in Engineering XII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 125, © 201 WIT Press2

(a) z=12

(b) z=14

(c) z=15

Figure 5: Item placements in case of improved PSO.

Computer Aided Optimum Design in Engineering XII 253

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 125, © 201 WIT Press2

PSO. The average CPU time is 35.198 and 65.124, respectively. The success rate
is 19.8% and 75.2%, respectively. The use of the improved PSO can increase the
item number improve the success rate although the CPU time is increased.

Next, the effect of the parameter Ps to the convergence property is discussed.
The maximum number of items and the CPU times for the different parameter Ps

are listed in Table 3. The results show that, at Ps = 0.1, the item number is largest
and CPU time is shortest.

5 Conclusions

Application of Particle Swarm Optimization (PSO) for the two-dimensional
packing problem was presented in this study. It was assumed that the packing
region was not regularly but arbitrarily shaped. The square items were packed in
the region as dense as possible without their overlapping. PSO was applied for
solving the arrangement problem of the items in the region. The original PSO
updates the particle position vectors by two information; the global best position
and the local best position. The present algorithms uses, in addition to them, the
second global best position. The present algorithm was applied for solving the
item packing problem to the two-dimensional concave region. The results were
compared with them by the original PSO. The average values of the maximum item
numbers are 12.07 in the original PSO and 13.99 in the present PSO. Therefore,
the present PSO can find better solution than the original PSO.

References

[1] J. H. Holland. Adaptation in Natural and Artificial Systems. The University
of Michigan Press, 1 edition, 1975.

[2] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley, 1 edition, 1989.

[3] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1
edition, 1991.

[4] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[5] D. B. Fogel and J. W. Atmar. Proc. 1.st annual Conference on Evolutionary
Programming. Evolutionary Programming Society, 1992.

[6] J. R. Koza, editor. Genetic Programming II. The MIT Press, 1994.
[7] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane, editors. Genetic

Programming III. Morgan Kaufmann Pub., 1999.
[8] J. Kennedy and R.C. Eberhart. Particle swarm optimization. In Proceedings

of IEEE the International Conference on Neural Networks, volume 6, pages
1942–1948, 1995.

[9] Ryan Forbes and Mohammad Nayeem Teli. Particle swarm optimization on
multi-funnel functions.

254 Computer Aided Optimum Design in Engineering XII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 125, © 201 WIT Press2

[10] C.Ryan, J.J.Collins, and M.O’Neill. Grammatical evolution: Evolving
programs for an arbitrary language. In Proceedings of 1st European
Workshop on Genetic Programming, pages 83–95. Springer-Verlag, 1998.

[11] C.Ryan and M.O’Neill. Crossover in grammatical evolution: A smooth
operator? In Proceedings of the European Conference on Genetic
Programming, pages 149–162. Springer-Verlag, 2000.

[12] C.Ryan and M.O’Neill. Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Springer-Verlag, 2003.

[13] Hallard T Croft, Falconer Kenneth J., and Guy Richard K. Unsolved
Problems in Geometry. Springer-Verlag, 1991.

[14] J. Melissen. Packing 16, 17 or 18 circles in an equilateral triangle. Discrete
Mathematics, 145:333–342, 1995.

[15] Erich Friedman. Packing unit squares in squares: a survey and new results.
The Electronic Journal of Combinatorics, DS7, 2005.

[16] D. S. Liu, K. C. Tan, S. Y. Huang, C. K. Goh, and W. K. Ho. On solving
multiobjective bin packing problems using evolutionary particle swarm
optimization. European Journal of Operational Research, 190(2):357 – 382,
2008.

[17] Chen Zhao, Liu Lin, Cheng Hao, and Liu Xinbao. Solving the rectangular
packing problem of the discrete particle swarm algorithm. In Business
and Information Management, 2008. ISBIM ’08. International Seminar on,
volume 2, pages 26 –29, 2008.

[18] Chuan He, Yuan-Biao Zhang, Jian-Wen Wu, and Cheng Chang. Research
of three-dimensional container-packing problems based on discrete particle
swarm optimization algorithm. In Test and Measurement, 2009. ICTM ’09.
International Conference on, volume 2, pages 425 –428, dec. 2009.

[19] P. Thapatsuwan, J. Sepsirisuk, W. Chainate, and P. Pongcharoen. Modifying
particle swarm optimisation and genetic algorithm for solving multiple
container packing problems. In Computer and Automation Engineering,
2009. ICCAE ’09. International Conference on, pages 137 –141, march 2009.

[20] M. Clerc. The swarm and the queen: towards a deterministic and
adaptive particle swarm optimization. In Proceedings of 1999 Congress on
Evolutionary Computation, volume 3, pages 1951–1957, 1999.

Computer Aided Optimum Design in Engineering XII 255

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 125, © 201 WIT Press2

