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Abstract 

The numerical search for the optimum shape of an aerofoil is of great interest for 
aircraft and turbomachine designers.  Unfortunately, this process is very 
computationally intense and can require a large number of individual flow field 
simulations resulting in very long CPU run times.  One of the core issues that the 
designer must deal with is how to describe the shape of the airfoil.  Clearly, we 
can not treat the profile on a point by point basis as the problem would have an 
infinite number of degrees of freedom.  Hence the typical practice is to resort to 
using a series of curves, such as polynomials and Bezier curves, to describe the 
profile.  This typically reduces the number of degrees of freedom to a much 
smaller, manageable number.  The influence of the selection of the 
parameterization on the optimization has received relatively little consideration 
to date.  We can anticipate that some parameterizations will be less suitable for 
describing the profile shape and may result in slower convergence times. 
     Our paper will discuss a new airfoil parameterization, Bezier-PARSEC, that 
was developed to extend and improve the typical Bezier parameterization found 
in use. This parameterization was found to fit the known shape of a wide range 
of existing airfoil profiles as well as resulting in accelerated convergence for 
aerodynamic optimization using Differential Evolution.  Our presentation will 
present the development and details of the Bezier-PARSEC parameterization and 
provide evidence that the parameterization is suitable and accelerates 
convergence. 
Keywords: aerodynamic optimization, airfoil parameterization, Bezier curves. 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

Computer Aided Optimum Design in Engineering XI  197

doi:10.2495/OP090181



1 Introduction 

The profiles of most airfoils given in the literature are described by a tabulated 
vector of 50 to 80 coordinate pairs located on the profile surface as demonstrated 
by NACA compilation given by Abbot and von Doenhoff [1].  The practical 
demands of aerodynamic optimization on CPU time require us to search for an 
effective parameterization that contains fewer degrees of freedom.  Four main 
objectives must be considered in developing an airfoil parameterization: 
minimizing the number of degrees of freedom as possible, the parameterization 
should be able to represent a wide range of existing airfoils, the parameters 
should be simple to formulate and impose, and finally, the parameterization 
should result in effective and efficient optimization. 
     The following work describes a new method of representing an airfoil that is 
an extension of a Bezier parameterization previously used by the authors [2] but 
uses aerodynamic parameters.  These are similar to the PARSEC parameters 
developed by Sobieczky [3]. 

2 Bezier-PARSEC parameterization 

A Bezier parameterization is determined by its control points which are physical 
points in the plane.  The first and last control points are the initial and terminal 
point on the curve itself.  However the other control points need not be on the 
curve even though they determine the shape of the curve.  As such a Bezier 
parameterization of an airfoil has control points that are only indirectly 
determined by the underlying aerodynamics.  It is desirable to have the 
parameters such as leading edge radius, trailing wedge angle, and so on that do 
have physical relevance to the flow, such as that demonstrated by Sobieczky [3, 
4].  Oyama et al. [5] showed that this type of parameterization improved the 
robustness and convergence speed for aerodynamic optimization, which makes it 
more suitable for optimization using genetic algorithms.  The superior 
performance of PARSEC parameterization is likely due to its ability to minimize 
epistasis – the nonlinear manner in which the objective function is dependent on 
the design parameters.  Typically a reduction in nonlinear interaction of the 
parameters will enable the optimizer to converge more quickly. 
     This motivated the development of a combined Bezier-PARSEC (BP) 
parameterization to utilize the advantages of both the Bezier and PARSEC 
parameterizations.  The BP parameters are aerodynamically oriented, and allow 
us to obtain the Bezier control points of four separate curves.  These curves 
describe the leading and trailing portions of the camber line, and the leading and 
trailing portion of the thickness distributions.  Each curve is ultimately a Bezier 
curve and will be denoted by BP ijkl, where i and j are the order of the leading 
and trailing thickness curve, and k and l are the order of the leading and trailing 
camber curves. 
     The parameters are: leading edge radius - ler , trailing camber line angle - teα , 
trailing wedge angle - teβ , trailing edge vertical displacement - tez , leading edge 
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direction leγ , location of the camber crest - ( ),c cx y , curvature of the camber 

crest - cκ , position of the thickness crest - ( ),t tx y , curvature of the thickness 
crest - tκ , the half thickness of the trailing edge - tedz , and several Bezier 
variable, 0b , 2b , 8b , 15b  and 17b .  The detailed development of the Bezier-
PARSEC curves is given by Rogalsky [6] and only the results will be given here.  

2.1 BP 3333 parameterization 

A BP 3333 parameterization uses third degree Bezier curves for all four curves 
used to define the airfoil.  A third degree Bezier curve is given parametrically by 

( ) ( ) ( ) ( )3 2 2 3
0 1 2 31 3 1 3 1 ,x u x u x u u x u u x u= − + − + − +  

and 
( ) ( ) ( ) ( )3 2 2 3

0 1 2 31 3 1 3 1 ,y u y u y u u y u u y u= − + − + − +  
where u  is the parameter that runs from 0 at the beginning to 1 at its terminus.  
The BP 333 parameterization relies exclusively on the aerodynamic parameters – 
there are no free Bezier points in BP 3333.  The ix and iy  are the Bezier control 
points, which are computed from the following: 

2.1.1 Leading edge thickness curve 
The control points are given by 

0 0x =  0oy =  

1 0x =  ( )2
1 93 / 2t t ty x b yκ= − +  

2 9x b=  2 ty y=  

3 tx x=  3 ty y=  
The parameter 9b  the root of 

( )
( ) ( )

2 4 2 3 2 2 2
9 9 9

2 3 2 2 2 4
9

27 / 4 27 9 81 / 2

2 18 27 3 9 27 / 4 0

t t t t t t t

le t t t t t t t t t t t

b x b y x b

r x y x b y x y x

κ κ κ κ

κ κ κ κ

− + +

+ − − + + + =
 

within the bounds given by 

( ) 9max 0, 2 / 3 .t t t tx y b xκ− − < <  

2.1.2 Trailing edge thickness curve 
The control points are given by 

0 tx x=  0 ty y=  

1 92 tx x b= −  1 ty y=  

( )( ) ( )2
2 91 3 / 2 cotte t t t tex dz x b yκ β = + − − +

 
 ( )2

2 93 / 2t t ty x b yκ= − +  

3 1x =  3 tey dz=  
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2.1.3 Leading edge camber curve 
The control points are given by 

0 0x =  0 0y =  

( )1 1 cot lex b γ=  1 1y b=  

( )2 12 / 3c c cx x b y κ= − −  2 cy y=  

3 cx x=  3 cy y=  
The parameter 1b  is computed from 

( )( ) ( )

( ) ( )( )
1 16 3 cot cot 1 cot / 3 cot cot

4 16 6 cot cot 1 cot cot cot

c le te te te c le te

c le te c le te te te

b z

y z

κ γ α α κ γ α

κ γ α γ α α

= + + + +      

± + + − + +
 

and must be within the following bounds 
10 .cb y< <  

2.1.4 Trailing edge camber curve 
The control points are given by 

0 cx x=  0 cy y=  

( )1 12 / 3c c cx x b y κ= + −  1 cy y=  

( ) ( )2 11 cotte tex z b α= + −  2 1y b=  

3 1x =  3 tey z=  

2.2 BP 3434 Parameterization 

A BP 3434 parameterization uses third degree Bezier curves for all of the leading 
edge curves and fourth degree Bezier curves for the both trailing curves used to 
define the airfoil.  A fourth degree Bezier curve is given parametrically by 

( ) ( ) ( ) ( ) ( )4 3 22 3 4
0 1 2 3 41 4 1 6 1 4 1 ,x u x u x u u x u u x u u x u= − + − + − + − +  

and 
( ) ( ) ( ) ( ) ( )4 3 22 3 4

0 1 2 3 41 4 1 6 1 4 1 .y u y u y u u y u u y u u y u= − + − + − + − +  

2.2.1 Leading edge thickness curve 
The control points are given by 

0 0x =  0oy =  

1 0x =  1 8y b=  
2

2 83 / 2 lex b r= −  2 ty y=  

3 tx x=  3 ty y=  
Here the parameter 1b  is subject to the following restriction 

( )80 min , 2 / 3 .t le tb y r x< < −  
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2.2.2 Trailing edge thickness curve 
The control points are given by 

0 tx x=  0 ty y=  

( )2
1 87 9 / 2 / 4t lex x b r= +  1 ty y=  

2
2 83 15 / 4t lex x b r= +  ( )2 8 / 2ty y b= +  

3 15x b=  ( ) ( )3 151 tante tey dz b β= + −  

4 1x =  4 tey dz=  

2.2.3 Leading edge camber curve 
The control points are given by 

0 0x =  0 0y =  

1 0x b=  ( )1 0 tan ley b γ=  

2 2x b=  2 cy y=  

3 cx x=  3 cy y=  

2.2.4 Trailing edge camber curve 
The control points are given by 

0 cx x=  0 cy y=  

( )( )1 3 cot / 2c c lex x y γ= −  1 cy y=  

( )( )2 8 cot 13 / 6c le cx y xγ= − +  2 5 / 6cy y=  

3 17x b=  ( ) ( )3 171 tante tey z b α= − −  

4 1x =  4 tey z=  
     The parameterizations assume that the length of the airfoil has been 
normalized to unit length. 

2.3 Airfoil Representation 

The parameterization method must be able tow represent a wide range of airfoils 
if it is to contribute to a robust design algorithm.  The authors compared the 
ability of Bezier and BP methods to reproduce 63 known airfoils: 40 NACA 
symmetric and asymmetric airfoils [7], 15 Eppler airfoils [8], and 8 low-speed 
airfoils [9].  Data for each of the selected airfoils consisted of an ordered array of 
coordinates for each profile. 
     The curves were fit to the coordinates using a modified airfoil design code 
that used Differential Evolution to find the parameters that minimized the 

2 - error norm between the representation and the given data points.  The DE 
algorithm was rand-to-best/1/exp with F=0.85, CR=1, and a population of 150 
members.  The maximum number of generations permitted was 500, however, in 
a few cases an additional run was used to obtain convergence.  The convergence 
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requirement was that the cost limit was less than 0.01.  For a unit chord length 
airfoil this corresponds to an average deviation of approximately 48 10−× . 
     The following discussion will be limited to a few representative airfoils due to 
limited space. 

2.3.1 NACA Symmetric Airfoils 
The Bezier, BP 3333 and BP 3434 approximations converged for all of the 
symmetric airfoils.  Typically, fewer that 3,000 approximations, or 20 
generations were required to obtain convergence, with one exception, the BP 
3333 parameterization of the NACA 671-015.  This indicates that matching the 
geometry of a known airfoil than for an inverse design using a Bezier 
parameterization [2]. 
     The parameterization of the NACA 0008-34 airfoil will be presented in more 
detail.  The curve fitting required the following; Bezier fit - 6,612 function 
evaluations with an average deviation of 41.06 10−× , BP 3333 fit – 4,243 
function evaluations with an average deviation of 41.24 10−× , and BP 3434 fit –
6,180 function evaluations with an average deviation of 41.26 10−× .  Clearly, all 
of the parameterization methods could successfully approximate the shape of the 
symmetric profiles.  The fit to the NACA 00008-34 is shown below, in Figure 1. 
 

 

Figure 1: Representation of the NACA 0008-34 airfoil. 

2.3.2 NACA asymmetric airfoils 
The Bezier and BP 3434 were able to successfully reproduce each of the 20 
asymmetric airfoils, with the BP 3333 failing to reproduce one, the NACA 
744A315 to the required tolerance.  The average number of function evaluations 
for the successful representations are as follows: Bezier fit – 3,302, BP 3333 - 
3,071, and BP 3434 – 4,424.  A successful fit for each method is shown below, 
in Figure 2, for the NACA 631-212 airfoil. 
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Figure 2: NACA 63-1-212 airfoil. 

     The failure of the BP 3333 parameterization for the NACA 747A315 was 
occurred near the trailing edge.  This was primarily attributed to a lack of 
sufficient freedom on the trailing edge camber with minor issues with the trailing 
edge thickness profile.  The NACA 747A315 has a sharp cusp at the trailing 
edge that is difficult to approximate.  This was not an issue with the BP 3434 
approximation as it has additional control points at the trailing edge. 

2.3.3 Eppler airfoils 
Eppler pursued the development of accurate theoretical methods to obtain 
inverse designs of airfoils with prescribed boundary layer characteristics.  This 
has resulted in a catalogue of well established airfoils [8].  These airfoils 
represent a greater challenge due to their shape.  The attempts to approximate 
these airfoils were less successful with the following success rates: Bezier – 
73%, BP 3333 – 80%, and BP 3434 – 90%.  The number of function evaluations 
for the successful approximations were: Bezier – 3,316, BP 3333 – 3,570, and 
BP 3434 – 4,870.  The resulting approximations for the E 266 airfoil are shown 
below in Figure 3. 
     The reasons for the failure to approximate the Eppler airfoils to the required 
accuracy are numerous, and include a lack of degrees of freedom, difficulty with 
airfoils that have a positive leading edge and negative trailing edge directions, 
and finite trailing edge thickness to name a few issues. 

2.3.4 Low-speed airfoils 
All of the methods were able to reproduce the selected set of low-speed airfoils 
to the desired tolerance.  The average number of function evaluations required to 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

Computer Aided Optimum Design in Engineering XI  203



 

Figure 3: Eppler E 266 airfoil. 

 
fit the airfoils were: Bezier – 5,483, BP 3333 – 8,834, and BP 3434 – 9,994.  A 
representative fit for the low-speed airfoils is given for the FX 74-CL5-140 
MOD airfoil shown in Figure 4. 
 
 

 
 

Figure 4: Low-speed FX 74-CL5-140 MOD airfoil. 
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2.4 Summary 

Each of the three parameterization methods was able to represent a high 
percentage of the sample airfoils.  Of the 63 airfoils, the Bezier parameterization 
reproduced 58, BP 3333 reproduced 59, and BP 3434 reproduced 62.  In most 
cases the approximation required less than 10,000 function evaluations.  
Typically, the Bezier approximations required the fewest function evaluations 
and the BP 3434 approximations required the most. 
     The biggest limitation of the Bezier approximations is the discontinuous 
second derivative at the camber and thickness crests which can result in 
inaccurate flow field simulations.  A less significant difficult is the zero trailing 
edge thickness which is a problem for some airfoils such as the Eppler E 863. 
     The BP 3333 approximation has the least control point freedom which can be 
beneficial in some cases such as for the Eppler E 417.  Two classes of airfoil 
cannot be successfully represented by BP 3333; those with a radical change in 
the trailing edge camber curve and those with a camber curve that dips below the 
x-axis. 
     The BP 3434 approximation is the most robust due to the additional control 
points at the trailing edge.  This can be a problem in that it can result in the 
camber crest being pushed to far back or premature convergence with the shapes 
with sharp edges of incorrect trailing edge directions. 
 

 

Figure 5: Effect on convergence. 

3 Effect of parameterization on design speed 

The previous discussion showed that all three parameterization methods can 
represent a broad range of airfoils.  The next issue of concern is the affect of the 
parameterization on the robustness and rate of convergence for an inverse design 
problem.  The focus is narrowed to a comparison between the Bezier and BP 
3333 parameterizations.  The results of an optimization to a 112° cambered 
turbine blade will be presented here.  The optimization was based on finding the 
target airfoil that best matches the known, theoretical, pressure distribution on an 
airfoil.  This allows us to determine the robustness and convergence properties of 
the optimization process, while insuring that the optimum has been reached. 
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3.1 Convergence for a 112° cambered turbine blade 

The convergence rate for the Bezier and BP 3333 parameterizations are shown 
below.  Clearly the BP 3333 parameterization results in a more rapid 
convergence to the solution than the Bezier parameterization for this case, and 
was also found to be the case for a Liebeck design.  However, similar 
convergence histories for Bezier and BP 3333 parameterizations occurred for a 
C4/70/C50 turbine blade target.  Additionally, the BP 3333 approximation did a 
better job of converging to the target airfoil than the Bezier approximation. 

4 Conclusions 

The three parameterization methods are all capable of representing a wide range 
of airfoil shapes with a slight edge going to BP 3434.  However, the BP 3333 
parameterization performed better, and certainly no worse than the Bezier 
parameterization for inverse design. 
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