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Abstract 

Using the large displacement theory (theory of the third order according to 
Chwalla), this paper deals with the lateral buckling process of a slender, elastic 
cantilever beam with a changeable height of a rectangular cross section and 
represents it with a system of nonlinear differential equations. Based on a 
mathematical model of the lateral buckling process, which considers the 
geometric and boundary conditions, an optimal geometry of a cantilever beam is 
obtained using the calculus of variation. A comparison between the properties of 
the beam with optimized geometry and those of a referential beam with a 
constant cross section is shown. The result of the optimization process is, besides 
a higher critical load, a higher carrying capacity of the optimal geometry beam in 
the postbuckling region. For a verification of the theoretical results an 
experiment of the lateral buckling process had been done. 
Keywords: elastic stability, lateral buckling, geometry optimization, calculus of 
variation, large displacement theory. 

1 Introduction 

Lateral buckling of a bent cantilever beam is a stability problem, where a small 
lateral disturbance in an unstable equilibrium state produces a spatial deflection 
of the beam, and as a result a combination of bending and torsional load appears. 
This transition causes an additional load on the beam, so in the design process it 
should be ensured that the load does not exceed its critical value. That is the 
reason why, in cases of slender elements where the stability limit is the main 
criterion, the load carrying capacity of the material is poorly exploited. One 
possible way of increasing the stability limit and better exploit the load carrying 
capacity of the element is to optimize its geometry. 
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     The purpose of this paper is to represent an analytical method of geometry 
optimization of a bent cantilever beam and its numerical and experimental 
verification. Detailed theoretical studies of the geometry optimization method 
were previously presented in the paper [1]. The method of geometry 
optimization can be further applied to problems of buckling with  
one–dimensional elastic elements for various conditions and loads, as shown in 
dissertation [2]. 

2 Mathematical model of the lateral buckling process 

The model of the lateral buckling process on a slender cantilever beam with a 
rectangular cross section is obtained using the large displacement theory, and is 
based on the assumption that stress in the loaded beam lies in the elastic region 
of the material. 
     Figure 1 shows a buckled cantilever beam. The spatial deformation state of 
the beam is determined with three functions: 
• the lateral deflection of the neutral axis v , 
• the vertical deflection of the neutral axis w , 
• the rotation of the cross section ϑ . 
     Quantities ( )wvx ,, , which are used to describe the position of the elastic 
curve in space, are given per unit of the length of the elastic curve l, so they are 
non-dimensional. The position of the cross section is given with the unit vectors, 
which represent the orthonormal basis of the subsidiary coordinate system: 
• the tangent vector of the elastic curve ( )321 ,, ξξξξ eeee =

G
, 

• the vector of the symmetry axis of the cross section in the thickness direction 
( )321 ,, ηηηη eeee =

G
, 

• the vector of the symmetry axis of the cross section in the height direction 
( )321 ,, ζζζζ eeee =

G
. 
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Figure 1: An elastic curve of a cantilever beam in the deflected form. 
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     The results of the lateral buckling of the beam with optimized geometry will 
be compared with the results of lateral buckling of the referential beam with a 
constant cross section. For this purpose we define appropriate non-dimensional 
parameters that will be used for the analysis of the lateral buckling process with 
respect to relative properties of the referential beam. 
• Relative height of the cross section 
 
 ( ) ( ) 0/ hxhxh = , (1) 
 

where ( )xh  is height of the cross section in point x , and 0h  is height of the 
cross section of the referential beam. 

• Relative thickness of the cross section 
 
 ( ) ( ) 1/ 0 == txtxt , (2) 
 

where ( )xt  is thickness of the cross section, which is constant along the 
beam in considered case and is equal to thickness of the cross section of the 
referential beam 0t . 

• Relative cross-sectional area 
 
 ( ) ( ) ( )xhAxAxA == 0/ , (3) 
 

where ( )xA  is cross-sectional area in point x , and 0A  is cross-sectional area 
of the referential beam. 

• Relative moment of inertia of the rectangular cross section 
 
 ( ) ( ) ( ) ( )xhIxIIxIxI tt === 00 // ζζ , (4) 
 

where the following relations are valid for a slender rectangular cross section: 
( ) ( ) 3/3

0txhxI t = , 3/3
000 thI t =  and ( ) ( ) 12/3

0txhxI =ζ , 12/3
000 thI =ζ . 

• Relative load 
 
 0/ FFF = , (5) 
 

where F is a load on the free end of the beam, and 0F  is the critical 
buckling load of the referential beam. Critical buckling load 0F  is 
according to Timoshenko and Gere [3] given with the expression: 

 

 0020
013.4

tIEGI
l

F ζ= . (6) 
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     The mathematical model is based on the relations between loads and 
deformations, which appear in the lateral buckling process. We introduce the 
expressions for the inner moments, corresponding deformational quantities, 
properties of the material and the defined non-dimensional parameters into these 
relations. After appropriate transformation we can write a system of nonlinear 
differential equations in the final non-dimensional form: 
 

 ( ) ( )[ ] 22
2111 1

2
1013.4 wvexxevv

h
F ′+′+−−−

+⋅
=′ ξξ

νϑ , (7) 

 

 ( ) ( )[ ] 3

3
22

2111 1
1

2013.4
ζζζ ewvexxevv

h
Fv ′+′+−−−

+
⋅

=′′
ν

, (8) 

 

 ( ) ( )[ ] 2

3
22

2111 1
1

2013.4
ζζζ ewvexxevv

h
Fw ′+′+−−−

+
⋅

−=′′
ν

, (9) 

 
where ν  is Poisson’s coefficient of the material, 1x  is value of the variable x  
on the free end and 1v  is value of the lateral displacement on the free end. The 
value 1x  is determined with the expression for the elastic curve length in the 
normal form: 
 

 11
1

0

22 =′+′+∫
x

xdwv . (10) 

 
Boundary conditions for the system of differential equations, eqns (7), (8), and 
(9), are: ( ) 00 =ϑ , ( ) 00 =v , ( ) 00 =w , ( ) 00 =′v  and ( ) 00 =′w . 

3 Geometry optimization 

Definition of the geometry optimization problem is: for a slender cantilever 
beam with a rectangular cross section and fixed length we are trying to find an 
appropriate longitudinal shape of the beam that would give maximal critical 
buckling load under the condition that the volume of the optimized beam is equal 
to the volume of the referential beam with a constant cross section. 

3.1 Variational problem 

The unstable state, which appears when the load reaches its critical value cF , 
represents a limit state of the buckling process where a small disturbance causes 
transformation of an element from an unstable to a new stable form. So in this 
limit state we can substitute functions used in the model of the lateral buckling 
process with their differentials – we linearize the mathematical model. 
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The linearized model is written using a new variable xu −= 1  and it can be 
transformed into an ordinary differential equation of the second order for the 
function ( )uϑ : 
 
 0013.4 2222 =⋅⋅+′′+′′ ϑϑϑ uFhhh c . (11) 
 
It turns out that in the case of optimal geometry the following boundary 
conditions are valid for eqn (11): ( ) 00 =h  ( )( )00 ≠′ϑ , ( ) 01 =ϑ . 
     The optimization is based on the geometric condition of unchanging volume 
of the cantilever beam, which is expressed with an equation: 
 

 ( ) 1
1

0

=∫ uduh . (12) 

 
     Eqn (11) can be represented in two ways: as linear differential equation of the 
second order for the function ( )uϑ  or as differential equation of the first order 

for the function ( )uh . We can solve the differential equation for the function 

( )uh  and introduce this solution into eqn (12), so the relative critical load could 
be written in the following form: 
 

 
( )ϑJ

Fc
⋅⋅

=
2013.4

1 , (13) 

 
where ( )ϑJ  represents a functional: 
 

 ( ) ∫
∫

′

′−
=

1

0
2

0

2

ud
ydy

J

u

ϑ

ϑϑ
ϑ . (14) 

 
Using eqn (13) we can write the final form of solution of optimization problem: 
 

 ( ) ( )ϑ
ϑ

ϑϑ

J

ydy

uA

u

2
0

2

′

′−

=

∫
. (15) 

 
The relative critical load cF  will be maximal if the value of functional ( )ϑJ  is 
minimal. So we define the variational problem as follows: among all function 

( )uϑ  that are in the interval [0,1] continuous and continuously differentiable, we 
are looking for the one that would give a minimum value to functional ( )ϑJ . 
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     The variational problem was solved using the expression for function ( )uϑ  in 
the form of a series, Vidav [4], that fulfills the prescribed boundary conditions: 
 

 ( )∑
=

=

+−+−=
nk

k

kk
k uuu

1

11 αϑ . (16) 

 
Using this expression, we transform the functional, eqn (14), into a function of n 
variables: ( ) ( )ngJ αααϑ ,,, 21 …= . The necessary condition for the minimum of 
function of n real variables is represented with the system of n nonlinear 
equations, Arora [5]: 
 

 0=
∂
∂

k

g
α

; nk ,,2,1 …= . (17) 

 
The nonlinear system of equations was solved numerically, according to 
Hoffman [6]. 

3.2 Results of geometry optimization 

The main result of the geometry optimization process is maximal relative critical 
load: 235.1max =cF . Corresponding solution of the variational problem is shown 
in Figure 2. 
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Figure 2: Solution of variational problem. 

     In the root of the solution of the variational problem ( )0=u  singularity 
appears, cross–sectional area is equal to zero. This means, that shear stress, 
which is present before the lateral buckling of a beam, is not limited in the point 
of singularity. Beside this, an assumption of a slender beam is violated around 
the singularity point. For experimental use of the results, a shear stress constraint 
was included in the optimization procedure and appropriate values of geometry 
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and material parameters of the referential beam ensured that all assumptions that 
were made in the mathematical model of the lateral buckling process, were 
fulfilled. 

4 Results for postbuckling region 

In the geometry optimization procedure we discuss the behaviour of the beam in 
the unstable state of the lateral buckling process. To represent the behaviour of 
the cantilever beam in the postbuckling region, we should find a solution of the 
system of nonlinear differential equations, eqns (7, 8, 9), which represents the 
mathematical model of the lateral buckling process by the large displacement 
theory. The system of equations is solved numerically with the Runge–Kutta 
method, Hoffman [6]. 
     In the unstable state of the lateral buckling process, the lateral displacement of 
the free end rapidly increase, Figure3. With higher values of the relative load the 
lateral displacement is converging to the finite value. Figure 3 also shows the 
maximal nondimensional reference stress on the clamped end ∗

maxσ , which is 
obtained by the deformation energy theory, Skerlj [7], and given with the 
following expression: 
 

 ( ) 2
1

0
013.4 1

max
νσ +⋅⋅

=∗

h
vF . (18) 

 
In case of optimal geometry, maximal reference stress in the postbuckling region 
increases more slowly, despite higher critical buckling load. Values of the actual 
reference stress are determined with the appropriate selection of the geometry 
and material parameters of the referential beam. 
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Figure 3: Results for postbuckling region. 
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5 Experimental verification of the theoretical results 

An experiment of the lateral buckling process was realized for the beam with 
optimized geometry and the referential beam with a constant cross section. 
Results of the experiment are measured lateral displacements of the free end for 
given loads. Appropriate selection of the material and geometry parameters 
ensures that stress in the loaded beam lies in the elastic region. In order to keep 
postbuckling stresses in the elastic region we have used steel with high carrying 
capacity for the experiment. 
     In theoretical calculations we need a value of Young’s modulus of elasticity 
of the material E. Modulus of elasticity have been obtained from bending test, 
Figure 4, where surface characteristics have crucial influence on mechanical 
properties – similar to buckling process. Modulus is determined with relation 
between load and deformation at bending test: 
 

 
48ˆ

3

0

l
Ix
FE

f ζ

= , (19) 

 
where fx̂  is average value of measured displacements f, Figure 4. 
 

 F

l

2/l

f 0h
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Figure 4: Bending test. 

     Experiment of the lateral buckling process showed an existence of initial 
curvature of the tested beams. This property causes different displacements 
depending on which side the beam buckles. Results that correspond to the 
buckling on the side of initial curvature are characterized as results A and those 
that correspond to the opposite side as results B. Comparison between the 
theoretical and the experimental results was made just for the case B, because the 
unstable state is present only in that case. 
     Theoretical and experimental results of tested beams are shown in Figure 5 
and Tables 1, 2, where Fx̂  is average value of corresponding load and Fδ  is 
relative load error. In the Figure 5 can be seen that at higher postbuckling load 
results A and results B converge to the same value. Analysis of the results shows 
that in the case of referential beam, theoretical and experimental results are in 
good agreement and in the case of optimized beam, experimental load is slightly 
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higher than theoretical. The main reason for existing errors is that the optimized 
geometry exposes influence of hardened surface of the material on the beam. 
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Figure 5: Theoretical and experimental results for the referential beam and 
the beam with optimized geometry. 

Table 1:  Comparison between theoretical and experimental results for the 
referential beam. 

1v  [mm] F  [N] Fx̂  [N] Fδ  [%] 
0 25,33 25,20 -0,52 

20 25,43 25,48 0,20 
40 25,74 25,75 0,04 
60 26,30 26,29 -0,04 
80 27,18 27,01 -0,63 

 

Table 2:  Comparison between theoretical and experimental results for the 
beam with optimized geometry. 

1v  [mm] F  [N] Fx̂  [N] Fδ  [%] 
0 30,68 31,46 2,48 

20 30,83 31,59 2,41 
40 31,32 32,32 3,09 
60 32,22 33,68 4,33 
80 33,67 35,75 5,82 

6 Conclusions 

The contribution presents an analytical approach to geometry optimization of 
lateral buckling process of a slender, elastic cantilever beam. Critical buckling 
load is considerably higher in the case of the optimized beam. 

Computer Aided Optimum Design in Engineering X  75

 © 2007 WIT PressWIT Transactions on The Built Environment, Vol 91,
 www.witpress.com, ISSN 1743-3509 (on-line) 



     With the solution of the system of nonlinear differential equations, 
representing the mathematical model of the lateral buckling process by the large 
displacement theory, the stress – strain state of the beam has been quantified. 
With the appropriate selection of values of the referential beam parameters, the 
optimized beam shows certain carrying capacity also in the postbuckling region, 
despite a higher critical buckling load. The solution of the optimization problem 
and the solution of the system of nonlinear differential equations are, considering 
certain conditions, valid in general, regardless of properties of the referential 
beam with constant cross section. 
     Experiment verification of the results shows that in the case of referential 
beam theoretical and experimental results are in good agreement. In the case of 
optimized beam combined effect of hardened surface and optimized geometry 
causes slightly higher experimental loads. 
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