Quantification of shrinkage deformation on line-heating

T. Iwata, K. Matsuoka National Maritime Research Institute, Japan.

Abstract

The bending processing of a ship Hull is carried out by Line-Heating using gas heating generally. This Line-Heating technique is based on the experience and the feeling of the skilled workers. This tacit knowledge is difficult to hand down and educate the skill to the new workers efficiently. Therefore, the quantification of this Line-Heating technique is expected to make learning the skill easy. Moreover, the quantification analysis of Line-Heating is indispensable for the systemizing and computerizing of ship building processing to increase further productivity. Therefore, much research about the quantification analysis of Line-Heating was carried out in the nineteen-nineties. However, the accuracy of the deformation estimation is insufficient because the past research was focused only on angular distortion. On Line-Heating, not only angular distortion but also shrinkage deformation is important. However, the data of shrinkage deformation is insufficient. Therefore, in this study, Line-Heating fundamental experiment using two type gases (acetylene and propane) was carried out to create the shrinkage deformation database. Heating velocity, gas flow rate and thickness of the plate were set parameter, 72 conditions data were obtained. The quantification relations between amount of heat input and quantity of angular distortion, quantity of transverse shrinkage or force of longitudinal shrinkage were determined. From the experimental results, it is clear that quantity of transverse shrinkage and force of longitudinal shrinkage are expressed by the following unified equation unrelated to gas species. $F_t = D_t T E = 200 Q$. Here, F_t is force of longitudinal shrinkage, D_t is quantity of transverse shrinkage, T is thickness of plate, E is Young's modulus and Q is heat input. This equation is similar to the White's equation used in welding researches. Additionally, the confirmed experiment was carried out to verify the accuracy of this equation.

1 Heat input parameter

Quantity of heat input per unit length Q (J/m) is decided by movement velocity of gas touch v (m/s) and quantity of combustion heat per unit time q (J/s) calculated from combustion gas flow rate.

$$Q = q/v \tag{1}$$

On Line-Heating, angular distortion Θ , transverse shrinkage D_t and longitudinal shrinkage D_l are generated. From the theory of welding deformation [1], following equations seem to be available [2].

$$\Theta = F_n(Q/T^2) \tag{2}$$

$$D_t = \alpha_l Q/TE \tag{3}$$

$$\int D_1 db = \alpha_2 Q(L / BTE) \tag{4}$$

Here, T is plate thickness, $F_n(*)$ is the function of *, α_1 and α_2 are constant, L and B are length and width of plate respectively and E is Young's modulus. Eqn (4) is the integral calculus of longitudinal shrinkage D_l in the direction to plate width on the section between the referential parallel lines whose interval is L. This equation is rewritten as following eqn (5) for evaluating force of longitudinal shrinkage F_l .

$$F_t = \alpha_2 Q = BTE \int D_l / L db$$
⁽⁵⁾

Constant α_1 and α_2 in eqns (3), (4) and (5) are dimensionless because the dimension of Q is J/m = N.

On this research, the relations between quantity of heat input Q (J/m) and angular distortion Θ (rad.), quantity of transverse shrinkage D_t (mm) or force of longitudinal shrinkage F_t (N) will be investigated experimentally.

2 Experimental methods

2.1 Materials

Four types of thickness (10, 16, 19 and 22mm) of polished steel were used for test materials. The chemical composition and the mechanical properties are shown in table 1.

2.2 Measurement method

The configuration of test specimens and the measurement points are shown in figure 1. Twenty-one lines in direction to longitudinal and nineteen lines in direction to transverse were scribed on the both side surfaces of test specimens. Three coordinates X, Y and Z at each cross point of scribed lines were measured before and after Line-heating by measurement equipment whose official accuracy is 1/100mm. The X and Y axis of coordinates on the surface of test specimens were on the basis of the origin that is located on the one of outermost cross points of scribed lines (refer to figure 1).

		Chemical Composition (%)				n (%)	Mechanical Properties		
							Yield	Tensile	Elon-
Туре	Thickness	C	Si	Mn	Р	S	Strength	Strength	gation
	mm	×100		×1000		MPa	MPa	%	
SS400	10	16	2	41	13	7	348	477	30
SS400	16	18	18	52	15	13	302	448	30
SS400	19	9	23	65	14	19	284	417	32
SS400	22	19	16	52	23	12	282	446	24

Table 1: The chemical composition and the mechanical properties

Figure 1: The configuration of test specimens and the measurement points

2.3 Heating method

The heat source of Line-Heating is mainly acetylene or propane. In this study, these two type gases were used on the experiments.

2.3.1 Fundamental experiment

Line-Heating was carried out using three types of gas touch nozzle and three conditions of touch movement velocity on each types of plate thickness and on each gas types as shown in table 2. Single nozzle of gas touch was used on each test specimens. Line-Heating was carried out on the three positions Y = 100mm, 400mm and 700mm in figure 1 under the condition of the movement velocity of gas touch 800mm/min, 600mm/min and 400mm/min respectively. Moreover, on calculating theoretical heat input to plate by theoretical calorific value, heat efficiency η given by the following equations was considered [3]. Here, v is movement velocity of gas touch (mm/s) and T is thickness of test plate (mm). After this, quantity of heat input in this paper is set to the value calculated by multiplying calorific value and this efficiency.

<u>w</u>

Gas Type	Gas Touch	Velocity	Calorific	Theoretical Heat Input, kJ/m					
	Number	mm/min	Value kJ/m	T=10mm T=16mm T=19mm T=22mm					
Acetylene	#1200	800	1330	582	643	674	705		
		600	1773	741	803	834	865		
		400	2660	1060	1122	1153	1184		
	#2500	800	2771	1212	1340	1405	1469		
		600	3695	1544	1673	1737	1801		
		400	5542	2209	2338	2402	2466		
	#4000	800	4433	1939	2145	2247	2350		
		600	5911	2471	2677	2779	2882		
		400	8867	3535	3741	3843	3946		
Propane	L1000	800	1802	595	595	595	595		
		600	2403	793	793	793	793		
		400	3604	1189	1189	1189	1189		
	L3000	800	5406	1784	1784	1784	1784		
		600	7208	2379	2379	2379	2379		
		400	10813	3568	3568	3568	3568		
	L5000	800	9011	2973	2973	2973	2973		
		600	12014	3965	3965	3965	3965		
		400	18021	5947	5947	5947	5947		

Table 2: Heating conditions of fundamental experiment

Table 3: Heating conditions of accuracy confirmation experiment

Specimen	Gas flow	Velocity	Heat	Specimen	Gas flow	Velocity	Heat
Number	Rate		Input	Number	Rate		Input
acetylene	l/h	mm/min	kJ/m	propane	l/h	mm/min	kJ/m
10-1	1600	445	1285	10-3	1250	400	1105
16-1	3750	445	3011	16-4	3200	400	2828
19-1	4500	315	4946	19-4	3500	330	3686
22-1	3300	230	4863	22-2	3600	250	4905
10-2	2100	640	1227	10-5	2150	700	1165
16-2	3700	445	2971	16-5	3750	400	3314
19-2	3900	335	4050	19-3	4050	370	3841
22-4	4000	240	5663	22-5	3800	260	4991
10-4	2850	900	1255	10-6	2700	900	1189
16-3	3750	445	3011	16 - 6	3250	400	2872
19-5	4150	355	4087	19-6	4300	390	3888
22-3	4000	250	5450	22-6	4250	270	5389

 $\eta = 0.00058vT + 0.36$ (acetylene) (6) n = 0.33 (propane) (7)

On heating, the tip of gas touch corn was positioned at the surface of plate. The gas touch was moved using an electrically driven cart. The moving velocity was calibrated and adjusted.

2.3.2 Accuracy confirmation experiment

On the basis of experimental equation of angular distortion obtained from fundamental experiment, heating conditions processing cylinder whose curvature radius is about R = 2000mm were calculated. For accuracy confirmation by comparing this estimated curvature radius and real that after heating, Line-Heating was carried out on these conditions as shown in table 3. Nine positions between Y = 0mm and Y = 800mm on each test specimens are heated on these conditions in direction to X coordinate at 100mm interval (refer to figure 1).

3 Results and discussion

3.1 Results of fundamental experiment

3.1.1 Angular distortion

The relation between angular distortion Θ and heat input parameter Q/T^2 is shown in figures 2 and 3. Each figure shows the result of acetylene and the results of propane respectively. The results of 10mm thickness where distorted buckling is generated are shown by white-painted square and the results of others are shown by black-painted circle. In case that Q/T^2 is higher than about $20(kJ/m)/mm^2$, steel plate buckled and there is little angular distortion. The mechanism of angular distortion is classified into following two groups by the value of Q/T^2 .

1) Q/T^2 is less than 10(kJ/m)/mm²: Angular distortion is increasing with increasing of Q/T^2 . This range seems to be the suitable condition for bending processing by Line-Heating. The relation between angular distortion Θ and heat input parameter Q/T^2 is approximately given by the following experimental equations.

$$\Theta = 22.7 \text{Ln}(Q/T^2) - 9.0 \text{ (acetylene)}$$
(8)

$$\Theta = 24.5 \text{Ln}(Q/T^2) - 3.2 \text{ (propane)}$$
 (9)

2) Q/T^2 is more than 10(kJ/m)/mm²:

Acetylene: Though distorted buckling with saddle shape deformation is slightly generated, angular distortion is increasing with increasing of Q/T^2 .

Propane: There is little angular distortion even if Q/T^2 is increasing. This range seems to be the suitable condition for shrinkage processing without bending.

3.1.2 Force of longitudinal shrinkage

The relation between force of longitudinal shrinkage F_t and quantity of heat input Q is shown in figures 4 and 5. Each figure shows the result of acetylene and the results of propane respectively. The results of 10mm thickness where distorted buckling is generated are shown by white-painted square and the results

đ.

Figure 2: Relation between quantity of angular distortion and heat input parameter (acetylene)

Figure 3: Relation between quantity of angular distortion and heat input parameter (propane)

of others are shown by black-painted circle. In case of acetylene, the relation between force of longitudinal shrinkage F_t and quantity of heat input Q has a good proportional relationship except test specimens with distorted buckling. On the test specimens with distorted buckling, it seems that the real girth length is different from the measurement value that obtained on measurement points at 100mm interval because the complex deformation in direction to outside of surface was generated. In case of propane, the relation between force of longitudinal shrinkage F_t and quantity of heat input Q has a proportional

Figure 5: Relation between force of longitudinal shrinkage and quantity of heat input (propane)

relationship including slightly scattering except test specimens with distorted buckling. Calculating α_2 in eqns (4) and (5) from figures 4 and 5, the relation between force of longitudinal shrinkage F_t and quantity of heat input Q is approximately given by the following experimental equations.

$$F_t (\mathbf{N}) = 0.234 Q (\text{kJ/m}) \text{ (acetylene)}$$
(10)

$$F_t (\mathbf{N}) = 0.207 Q (\text{kJ/m}) \text{ (propane)}$$
(11)

<u>w</u>

3.1.3 Quantity of transverse shrinkage

Figure 6: Relation between quantity of transverse shrinkage and heat input parameter (acetylene)

Figure 7: Relation between quantity of transverse shrinkage and heat input parameter (propane)

The relation between quantity of transverse shrinkage D_t and heat input parameter Q/T is shown in figures 6 and 7. Each figure shows the result of acetylene and the results of propane respectively. In case of acetylene, the scattering of measurement values is large. The results of specimens 10-4 and 19-5 where quantity of transverse shrinkage is especially large are shown by white-painted square and the results of others are shown by black-painted circle. The relation between quantity of transverse shrinkage D_t and heat input

parameter Q/T has a good proportional relationship except two test specimens above-mentioned. In case of propane, the scattering of measurement values is also large. The results of specimens 10-5 and 10-6 where quantity of transverse shrinkage is especially small are shown by white-painted square and the results of others are shown by black-painted circle. The relation between quantity of transverse shrinkage D_t and heat input parameter Q/T has a good proportional relationship except two test specimens above-mentioned. Calculating α_1 in eqn (3) from figures 6 and 7, the relation between quantity of transverse shrinkage D_t and heat input parameter Q/T is approximately given by the following experimental equations.

$D_t (10^{-3} \text{mm}) = 0.996 Q/T (\text{kJ/m})/\text{mm}$	(acetylene)	(12-1)
D_t (m) = 0.205 $Q/(TE)$ (J/N)	(acetylene)	(12-2)
$D_t (10^{-3} \text{mm}) = 1.081 Q/T (\text{kJ/m})/\text{mm}$	(propane)	(13-1)
D_t (m) = 0.222 $Q/(TE)$ (J/N)	(propane)	(13-2)

3.2 Results of accuracy confirmation experiment

On several heating conditions, the experimental values of curvature radius obtained by measurement were compared to the predicted values of that calculated from experimental eqns (8), (9) obtained from fundamental experiment. Results are shown in figure 8. On propane, the results of 10mm thickness specimens were deleted because of the distorted buckling. The thinner plate thickness is, the larger the real curvature radius is compared with the calculated one (insufficient bending). The thicker plate thickness is, the smaller the real curvature radius is compared with the calculated one (excess bending). Though heating conditions processing cylinder whose curvature radius is about R= 2000mm were selected on each test specimens, the thicker plate thickness is, the wider the breadth of heat affected zone by each Line-Heating is because of the heating condition where the gas flow rate is large and the heating velocity is slow. In case of bending processing cylinder using many heating lines different from fundamental experiment, they are influenced on each other because of the wide heat affected zone. Therefore, it seems that the curvature radius became small (excess bending) because the current heated area was restricted by plasticity deformation on surrounding heat affected zone.

3.3 Unified expression of shrinkage both longitudinal and transverse

On inherent stress method [1], [2], angular distortion, longitudinal shrinkage and transverse shrinkage are expressed by single shrinkage force proportional to quantity of heat input. It is able to explain that eqns (10), (11), (12-2), (13-2) are expressed separately into two directions on the basis of the following equation.

 $F_t(N) = D_t TE(N) = \alpha Q (kJ/m)$ (14) According to this equation, $\alpha_1 = \alpha_2 = (\alpha_1 + \alpha_2)/2 = 0.220$ (acetylene) or 0.215 (propane). Therefore, longitudinal shrinkage and transverse shrinkage are unified to the following equations.

$$F_t(\mathbf{N}) = D_t T E(\mathbf{N}) = 0.220 Q(\mathbf{kJ/m}) \quad \text{(acetylene)} \tag{15}$$

Figure 8: The curvature ratio on bending processing cylinder

 F_t (N) = $D_t TE$ (N) = 0.215Q (kJ/m) (propane) (16) Tendon Force F_t is given by White's experimental equation obtained in welding research.

$$F_t$$
 (N) = 0.200 Q (kJ/m) (17)

In reference [3], it is also concluded that eqn (17) is available on Line-Heating processing. On this research, the values of this α in eqns (15) and (16) are about 10% larger than the coefficient in White's equation. This reason seems to be the experimental error caused by the accuracy of heating processing (it is difficult to make fine adjustment of distance between gas touch corn and plate surface), the accuracy of measurement (the error about 0.05mm is generated by visual measurement) and the accuracy of analysis (it is not clear how to treat and decide the lacking of measurement data and unusual measurement value caused by the electrical noise). For unifying angular distortion, quantification of additional three constants except α mentioned-above is required.

Acknowledgement

We appreciate to The Cooperative Association of Japan Shipbuilders for their cooperating research funded by The Nippon Foundation.

References

- Matsuoka, K., Estimation of welded residual stress by inherent stress method, *Proc. of the 67th meeting of ship research institute for reading research papers*, Ship Research Institute: Tokyo, pp.197-206, 1996. [in Japanese]
- [2] Hayashi, S., Quantification of thermal bending works (1st report Breaking down of working procedure and grasping substance), *Preprints of the 65th national meeting of Japan welding society*, eds. Matsuoka, K. & Iwata, T., Japan Welding Society: Tokyo, pp. 134-135, 1999. [in Japanese]
- [3] 246th research group, 2000 fiscal year report of fundamental research about digital production technique of Hull block, The Shipbuilding Research Association of Japan: Tokyo, pp. 150-155, 2000. [in Japanese]