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Abstract

A model describing the suspension diffusion process of gas molecules in liquid
media is presented in this paper. This process is not yet solved by a satisfactory
model for micro-scale applications at this time. The new approach allows the
simulation of diffusion processes in continuous media considering the molecular
mass flux in a suspension/carrier phase mixture. Modelling the diffusion of gas
suspensions in liquid media the saturation mass ratio is reached near the liquid/gas
surface very quickly. The increase of gas concentration in the liquid domain
depends on the elapsed time and the physical properties of gas and liquid media.
The molecular gas velocity is described by a Maxwell probability density function.
Modelling the gas species diffusion the molecular convection is considered.
Modelling the mass flux of the molecular gas suspension characteristic time scales
are developed describing the completion level of the saturation progress based on
non-dimensional formulations of the molecular convection equation. The present
model is implemented in a CFD code and validated by a family of parametric
simulation results depending on the saturation mass ratio of the suspended gas
phase. This simulation result array shows the dependency of saturation time and
saturation mass ratio of the suspended gas molecules. Based on this relation
macroscopic diffusion processes in micromixers and microchannels are described
with this model and without an extra solution of molecule trajectories or spectral
fields of molecule velocity.
Keywords: two-phase flow, molecular diffusion, gas/liquid, dispersion, saturation.
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1 Introduction

The phase interaction of multiphase systems is a topic which is investigated
for the last century [6, 11, 12, 15] without giving clear answers modeling
the diffusion process of a suspended disperse phase in a continuous carrier
phase [19, 20]. Modelling the transport of suspended gas molecules in a liquid
carrier phase can not be described by discrete models [3, 5, 10, 16]. The motion
of suspended molecules follows diffusion characteristics [1, 4, 7, 13, 18] as
described in temperature or diffusive combustion processes. The major boundary
condition modelling the gas suspension process is the start concentration of the
suspension at the phase interface. The stability of numerical simulation depends
on the sensitivity of such a boundary condition [9, 17]. Modelling the mass
transport at this boundary condition defines the global mass balance and is are
significant parameter for the quantitative results [2]. Finally basic approximations
of molecular motions are necessary to give better values to be considered for
construction and development of future advanced mixing devices.

2 Continuum mechanical approach

In Fig. 1 the mass transport procedure at the phase interface is shown. During this
suspension process the liquid phase of the species (k = F ) absorbs gas molecules
of the species (k = G). The partial densities of both phases ρk are defined by the
product of the molecule mass of liquid phase molecules or gas phase molecules
mk and the number density nk, which means the molecule number per volume in
a given mixture volume V .

ρF = mF NF
V

V
= mF nF (1)

ρG = mG NG
V

V
= mGnG (2)

Supposing that suspended gas molecules replace no fluid molecule the efficient
mixture density ρ∗ is defined by the sum of the partial densities of gas and liquid:

ρ∗ = ρF + ρG (3)

The concentration ck of the species k is defined by the ratio of partial density and
mixture density:

ck =
ρk

ρ∗
(4)

Based on the concentration definition of fluid and gas phase media the partial
density ρkis defined on concentration ck and the efficient micture densityρ∗:

cF + cG = 1 (5)

ρ∗ck = ρk (6)
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Because of the continuity of both species the corresponding equations for the
partial densities are defined depending on the partial velocities of of the liquid
and gaseous phase:

∂

∂t
ρF +

∂

∂xj

(
ρF uF

j

)
= 0 (7)

∂

∂t
ρG +

∂

∂xj

(
ρGuG

j

)
= 0 (8)

Summarizing these equations the global mass balance results:

0 =
∂

∂t


ρF + ρG︸ ︷︷ ︸

ρ∗


+

∂

∂xj

(
ρF uF

j + ρGuG
j

)

=
∂

∂t
ρ∗ +

∂

∂xj


ρ∗

ρF uF
j + ρGuG

j

ρF + ρG︸ ︷︷ ︸
=:U∗

j




=
∂

∂t
ρ∗ +

∂

∂xj

(
ρ∗U∗

j

)
(9)

This equation is the continuity equation of the liquid/gas mixture of the species G
and F . The global mass flow results from the effective mixture density ρ∗ and the
effective mixture velocity U∗.

Figure 1: Distributed phases: G (gas) is suspended in phase F (fluid) with the mass
flow dm/dt at the phases interphase.
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2.1 Concentration of the suspension

To get a transport equation for the concentration, the concentration depending
density ρk (eq. (6)) is substituted in the continuity equation (eq.(7)):

∂

∂t

(
ρ∗cF

)
+

∂

∂xj

(
ρ∗cF uF

j

)
= 0 , (10)

For this following transport equation with a mixture velocity depending convective
term results:

∂

∂t

(
ρ∗cF

)
+

∂

∂xj

(
ρ∗cF U∗

j

)
=

∂

∂xj

[
ρ∗cF

(
U∗

j − uF
j

)]

=
∂

∂xj


cF


 ρ∗U∗

j︸ ︷︷ ︸
=ρF uF

j +ρGuG
j

−ρ∗uF
j






=
∂

∂xj


cF

(
ρGuG

j

)
+
(
cF − 1

)︸ ︷︷ ︸
=−cG

(
ρF uF

j

) (11)

Based on a substitution with one of the both concentration terms (eq. (5)) the
transport equation of the species concentration results:

∂

∂t

(
ρ∗cF

)
+

∂

∂xj

(
ρ∗cF U∗

j

)
=

∂

∂xj

[
cF
(
ρGuG

j

)− cG
(
ρF uF

j

)]
(12)

Here a transport equation depending on the mixture density ρ∗ and the mixture
velocity U∗ analogous to the transport equation of other physical values of this
mixture process is given.

2.2 Modelling the diffusion approach

Based on the consideration, that the developed diffusion term is modelable by the
linear approximation, the transport follows from Fick’s law:

∂

∂t

(
ρ∗ck

)
+

∂

∂xj

(
ρ∗ckU∗

j

)
=

∂

∂xj

(
ρ∗D

∂ck

∂xj

)
(13)
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and following equivalence from eq. (12):

ρ∗D
∂cF

∂xj
= cF

(
ρGuG

j

)− cG
(
ρF uF

j

)
+ Aj (14)

with a constant vector �A.
It is considered with the hypothesis |�uF | = 0 that the motion of the liquid

medium is negligible during the diffusion process of the gaseous molecules. By
the upper result (eq. (14)) following relation of the concentration gradient results:

ρ∗D
∂cF

∂xj
= cF

(
ρGuG

j

)
+ Aj (15)

At the wall for all species k it is given:

∂ck

∂xj

∣∣∣∣
W

= 0 , uk
j

∣∣
W

= 0 (16)

From eq. (15) the constant vector �A = �0 results and considering eq. (6) the mixture
velocity is given:

uG
j =

ρ∗

cF ρG
D

∂cF

∂xj

=
D

cF cG

∂cF

∂xj
(17)

By this definition the global relation between diffusion rate and concentration
gradient is shown.

2.3 Mass flow rate at the phase interface

Based on the assumption that the suspended gas phase reaches the saturation
concentration at the phase interface (PI)

cG
∣∣
PI

= cG
max (18)

the interfacial mass flow is given in the following way:

uG
j

∣∣
PI

=
D

(1 − cG
max)cG

max

∂cF

∂xj

∣∣∣∣
PI

=
D

(cG
max − 1)cG

max

∂cG

∂xj

∣∣∣∣
PI

(19)

ṁ|PI =
(
ρ∗cG�uG · �ez

)
PI

=
ρ∗D

cG
max − 1

∂cG

∂z

∣∣∣∣
PI

(20)

Because of the dependence of the mixture density ρ∗ from the partial suspension
density ρG and therefore from the suspension concentration it is substituted by
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ρ∗ = ρF /cF . So the following explicit form of the interfacial mass flow results:

ṁ|PI = − ρF D

(1 − cG
max)

2︸ ︷︷ ︸
=const.

∂cG

∂z

∣∣∣∣
PI

(21)

With this form the interfacial mass flow is defined by the initial density of the
liquid phase (without suspension) ρF , the saturation concentration cG

max, the binary
diffusion coefficient D and the local concentration gradient of the suspended
species.

3 Transport equations

Inducing the resulting suspension velocity (eq. (17)) the continuity equation of the
suspended gaseous phase is given by following equation:

∂

∂t
ρG +

∂

∂xj

(
ρGD

cF cG

∂cF

∂xj

)
= 0 (22)

By eq. (6) following transport equation results independent from the suspension
velocity:

∂

∂t

(
ρ∗cG

)
=

∂

∂xj

(
ρ∗D

1 − cG

∂cG

∂xj

)

with ρ∗ =
ρF

1 − cG
(23)

The implicit form of this equation is unsuitable for linear solvers:

∂

∂t

(
cG

1 − cG

)
=

∂

∂xj

(
D

(1 − cG)2
∂cG

∂xj

)

=
∂

∂xj

[
D

∂cG

∂xj

(
cG

1 − cG

)]
(24)

In analogy to the exact solution of the implicit formulation the ratio cG/(1 − cG)
is the exact solution of a mathematical heat equation (eq. (24)) in a non-restricted
domain:

cG

1 − cG
=

cG
max

1 − cG
max

[
1 − erf

(
x

2
√

Dt

)]
(25)
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After a corresponding conversion the explicit formulation of the suspension
concentration cG results depending on spatial position and time.

1
cG

− 1 =
1

cG
max

− 1

1 − erf
(

x
2
√

Dt

) (26)

cG =


1 +

1
cG

max
− 1

1 − erf
(

x
2
√

Dt

)

−1

=


1 +

1 − cG
max

cG
max

(
1 − erf

(
x

2
√

Dt

))

−1

(27)

This exact approach is valid for a non-restricted domain only, where the suspension
diffuses.

4 Simulation results and verification

In a simulation the proposed mass flow inlet boundary condition (eq. (21)) is
verified. The input/start requirement concentration is zero over complete domain
at t = 0. This is the initial condition for the diffusion process simulation. At the
phase interface only (x = 0) the concentration of the suspended gas is equivalent
with the saturation concentration cmax.

Based on this initial condition two simulations are performed. Verifying the
mass flow model at the phase interface the simulation results of the boundary
condition with a given concentration at the interface c|x=0 = cmax (Inlet 1)
are compared with the proposed mass flow boundary condition (Inlet 2). For
the comparing simulations as the exact solution cmax = 0, 2, L = 0.1m and
D = 10−3 m2

s are used.
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Figure 2: Computational simulations of the concentration distribution (Inlet 1,
Inlet 2) are conform with the error function (erf) away from a wall.
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Now it is shown that during the time, when the concentration at the wall is
negligible, the influence of the wall is also negligible and the simulation result of
both inlet conditions (Fig. 2) are equivalent with the exact solution of a diffusion
process in an open domain (erf, eq .26).

After reaching the wall of the higher concentrations (Fig. 3), simulation results
of eq. (26) diverge from the open domain solution, because this exact solution
is not defined in restricted volumes. But because of the equivalence of both
simulation results with the initial and the modelled mass flow boundary condition,
the mass flow model at the phase interface is verified for open and restricted
domains.

5 Saturation of a restricted domain

Describing the time-dependent saturation eq. (23) is dedimensioned. All variable
values are normalised with the constants L, ρF and D, so that the normalized
values are non-dimensional. For this transformation the equation is defined
depending on:

t+ =
tD

L2
, x+ =

x

L
, ρ+ =

ρ∗

ρF
(28)

by multiplying eq. (23) with the ratio L2/(DρF ). L is the characteristic length of
the restricted domain:

∂

∂
(

tD
L2

) ( ρ∗

ρF
cG

)
=

∂

∂
(xj

L

) ( ρ∗

ρF

1
1 − cG

∂cG

∂
(xj

L

))

⇒ ∂

∂t+

(
ρ+cG

)
=

∂

∂x+j

(
ρ+

1 − cG

∂cG

∂x+j

)
(29)
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Figure 3: Computational solution (Inlet 1, Inlet 2) diverge from the exact open
domain solution when the concentration near the wall increase (erf,
without wall), but they are equivalent among each other.
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Figure 4: Time-dependent change of
the spatial distribution of the
local saturation level between
t+ = 0, 001 and t+ = 2, 5
with cG

max = 0.01.
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Figure 5: Isolines of the mean satu-
ration level in a restricted
domain over cG

max × t+ and
its modelling result.

The unsteady derive of the relative saturation level c+ = cG/cG
max is defined with

following equation:

∂

∂t+

(
ρ+cG

+

)
=

∂

∂x+j

(
ρ+

1 − cG
maxcG

+

∂cG
+

∂x+j

)
(30)

As shown this time-dependent change of saturation level depends on the saturation
concentration cG

max.
To stop an unsteady simulation with cG

max = 0, 01 the void time-scale t+ = 2, 5
seems to be great enough, because the mean saturation level has reached the
maximum and the diffusion process is nearly completed. Analysing the isolines
of the mean saturation level (Fig. 5), it is shown that the wanted time scale t+ has
to be much higher to define the saturation process as completed (mean saturation
level > 99%) for low saturation concentrations cG

max.
The estimation of a time T , for what a domain with the length L is

approximately saturated, has to be between t+ = 2, 0 and t+ = 2, 7. A propose
for an over-all approximation would be t+ = 2, 5 or:

TD

L2
= t+ ≈ 2, 5 ⇒ T ≈ 5L2

2D
(31)

A finer approximation considering the saturation concentration cG
max would be:

T =
[
2, 7 − 0.415 ln

(
1 + 11 cG

max

)] L2

D
< 2, 7

L2

D
(32)

For this model more than 99.5% of the maximum suspendible gas mass would be
absorbed in the carrier phase.
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6 Conclusion

Modelling the diffusion process of a suspension in a liquid carrier phase by eq. (23)
is possible with two kinds of boundary conditions:

1. Given concentration value at the phase interface c|x=0 = cmax

2. Modelled mass flow at the interface by eq. (21)
The simulation results of both boundary condition types are equivalent. If the
diffusion process is executed far away from a domain restricting wall the
simulation results are equivalent the exact solution

cG =


1 +

1 − cG
max

cG
max

(
1 − erf

(
x

2
√

Dt

))

−1

of a heat equation (eq. (24)) additionally.
The characteristic time of an approximately completed diffusion process in a

restricted domain, after what the mean local saturation level has nearly reached
the maximum ( > 99.5%) is restricted by T < 2, 7 L2

D and is given by eq. (32)
depending on the domain length L, the diffusion parameter D and the saturation
concentration cG

max.
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