
Analytical solution of a two-dimensional 
elastostatic problem of functionally graded 
materials via the Airy stress function 

H. Sakurai 
Co-operative Education Centre, 
Sendai National College of Technology, Japan 

Abstract 

Functionally Graded Materials (FGMs) possess properties that vary gradually as 
a function of spatial coordinates. They are different from conventional composite 
materials in that they have no distinct interfaces at which their material 
properties change abruptly. These FGMs are suitable for various applications, 
such as aerospace, nuclear fusion, biomaterial electronics, etc. In practice, 
applications of analytical solutions are limited. However, the analytical solutions 
are very important as standards for evaluating numerical simulation results and 
they are also important to mathematical understanding. Little research on the 
analytical solutions of two-dimensional elastostatic problems has been reported. 
Furthermore, few analytical solutions using Airy stress functions have been 
published. The purpose of this paper is to propose an analytical method for the 
two-dimensional elastostatic problems of FGMs using the Airy stress function. 
In the present investigation, FGMs in which the properties of the materials vary 
exponentially in one direction are examined. A few numerical examples are 
presented and the validity of the method is shown by comparisons with the 
results of past studies. 
Keywords: analytical solution, functionally graded material, two-dimensional 
problem, Airy stress function. 

1 Introduction 

The Functionally Graded Materials (FGMs) possess properties that vary 
gradually as a function of spatial coordinates. They are different from 
conventional composite materials in that they have no distinct interfaces at which 
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their material properties change abruptly [1]. These FGMs are suitable for 
various applications, such as aerospace, nuclear fusion, biomaterial electronics, 
etc. Chakraborty et al. developed a new beam element solving FGM beam 
structures based on the first order shear deformation theory [2]. Nguyen et al. 
proposed a first-order shear deformation plates models for modeling structures 
made of FGMs [3]. Xinag and Yang studied free and forced vibrations of a 
laminated FGM Timoshenko beam with variable thickness under heat 
conduction [4]. Sankar and his co-workers have been reporting analytical 
methods for the thermomechanical analysis of FGM beams [5–7].  
     Zhu and Sankar presented an elasticity solution of a simply supported FGM 
beam having variation of Young’s modulus distributed by a polynomial in the 
thickness direction [6]. In Ref. [6], the Fourier series method is used to reduce 
the governing partial differential equations to the ordinary equations that are then 
solved by the Galerkin method. Miers and Telles proposed the Boundary 
Element-Free Method belonging to a meshless technique, for two-dimensional 
elastostatic analysis of FGMs [8]. Zhong and Yu presented explicit solutions of a 
cantilever FGM beam having arbitrary graded variations of material properties 
distributed in the thickness direction based on two-dimensional theory of 
elasticity [9]. 
     Applications of analytical solutions are limited to practical shapes of analysis 
regions and boundary conditions. However, the analytical solutions are very 
important as standards for evaluating numerical simulation results, such as finite 
element method etc., and they are also important to mathematical understanding. 
Little research on the analytical solutions of two-dimensional elastostatic 
problems has been reported. Furthermore, to the best of the author’s knowledge, 
few analytical solutions using Airy stress functions have been published. 
     The objective of the present paper is to describe the analysis of the two-
dimensional elastostatic problems of FGMs using the Airy stress function. In this 
study, FGMs in which the properties of the materials change exponentially in 
one direction are treated. A few numerical examples are presented and the 
validity of the method is shown by the comparisons with the results of the 
present method and results of past studies. 

2 Two-dimensional problem of FGMs and basic equations 

In the Cartesian coordinate system O-xz , we consider a simply supported FGM 
beam subjected to a transverse load as shown in Fig. 1. The length in the x  
direction is l and the length in the z direction is h . In Fig. 1, the uniform 
transverse load and the simply supported boundary condition are one of the 
examples.  
     In the absence of body forces the equilibrium equations are given as 
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where zxzzxx  ,, are stress components and xzzx   . 
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Figure 1: An example of a simply supported FGM beam. 

     The relationships between strains and displacements are 
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where zxzzxx  ,, are strain components and wu,  are the displacement 

components in the x  and the z direction respectively. The strain components 
should also satisfy the following compatibility condition. 
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     The constitutive equations are given as  

 zzxxxx ss  1311        zzxxzz ss  3313        zxzx s  44  (4)  

where 44331311 ,,, ssss  are elastic moduli. The material properties of FGMs 

change gradually as a function of spatial coordinates. We assume material 
properties varying exponentially in the z direction, i.e.  
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where
0
ijs  are their corresponding values in the plane 0zz   with 0F(z )=1  and 

F(z) , is called graded function, which expresses the distribution of material 

properties, and the parameter α  is called the graded index [9]. Now, we 
introduce Airy stress function ( )Φ x,z  expressed by the following equations. 
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Substituting Eqns. (4)-(6) into Eqn. (3), the next governing equation with respect 
to Airy stress function ),( zx is obtained. 
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     The above equation is the same form as the governing equation of the plates 
bending with variable rigidity, and it is possible to adopt the same method for the 
solution [10]. 

3 Method of solution 

In Eqn. (7), we introduce the following Airy stress function ( )Φ x,z . 
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The function ( )if x  should be assumed to satisfy the mechanical boundary 

conditions at the 0x   and x=l . For instance, under the simply supported 
condition and the cantilever condition, it should be chosen to satisfy σxx=0, σzz=0 
at the both ends and σxx=0 and σxz=0 at the free end respectively. 

3.1 Formulation for simply supported FGM beam subjected to uniform 
pressure 

In this problem, we assume the following function 
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where 
l

i
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where xxf ici cos)(  . Substituting Eqn. (9) into Eqn. (7), the following 

ordinary differential equation with respect to the unknown function )(zAi is 

obtained easily. 
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     The solution of the above equation is given as 
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where the )4,3,2,1(, jr ji  are the roots of the following the 4-th order 

equation and the )4,3,2,1(, jC ji  are arbitrary constants to be determined by 

the boundary conditions at 2hz   and 2hz  . 
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Considering Fourier expansion of the transverse pressure 0)( pxpz  , the 

following equation is obtained. 
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     The boundary conditions at the both surfaces are as follows. 

0pzz      ,   0zx       at  2hz   

 0zz          ,   0zx       at  2hz   (15) 

Substituting Eqn. (10) and Eqn. (14) into Eqn. (15), the following four equations 

for determining the arbitrary constants jiC ,  are derived.  
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3.2 Formulation for cantilever FGM beam subjected to uniform pressure 

We deal with the formulation of a cantilever FGM beam such as shown in Fig. 2.  
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Figure 2: An example of a cantilever FGM beam. 

     It is necessary to assume the function ( )if x satisfying the mechanical 

boundary conditions at the free end. One of the simplest functions satisfying the 
above conditions is  
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     Substituting Eqn. (17) into Eqn. (7), the following ordinary differential 
equation is derived again. 
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     We consider the above equation as the following ordinary differential 

equation with respect to z at the given section 0xx  (constant). 
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     The solution of the ordinary differential equation is given in the same form as 

Eqn. (12). The boundary conditions on the top 2hz   and on the bottom 

2hz   at the 0xx  (constant) are expressed as follows. 
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4 Numerical examples 

4.1 Analysis of simply supported FGM beam under sinusoidal pressure 

Let us consider a simply supported FGM beam subjected to a sinusoidal pressure 
as shown in Fig. 3. For convenience, the results are indicated in the coordinate 
system of Fig. 3 [6]. The Young’s modulus is assumed to be of the form 

0
αz hE E e  and the constitutive equation is the same as that of Ref. [7].  

 

x

z
l

h

O

 

Figure 3: A simply supported FGM beam subjected to sinusoidal pressure. 

     Two types of the material properties are considered, and the ratios of Young’s 
moduli of the top surface and the bottom surface are 10h 0E E =  and 

0.1.h 0E E =  In the case of the former, the graded index   in Eqn. (5) 

corresponds to 2.30α   , and in the case of the latter, it corresponds to 
α=-2.30 . Further, in the case of the former, the load is applied on the softer 
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surface and in the case of the latter, on the harder surface. In both cases, Young’s 
modulus is 10E =  [Gpa], Poisson’s ratio is 0.25ν   and the thickness is 10h 
[mm]. The type of the applying force is sinusoidal 

( ) sin sin i ,z 0 0p x p ξx=p πx l  ,ξ=iπ l i=1,3,5 . 

     Figure 4 shows the axial stress distribution at the middle span for
10 1h 0E E = ,ξh= , and Fig. 5 shows the shear stress distribution at the middle 

span for 0.1 3h 0E E = ,ξh= . In the figures, “Galerkin method” indicates the 

results of Ref. [6]. The vertical axis is the normalized stress values. The stress

xx is divided by the ),( hxxx , and the stress xz  is divided by the average 

value at the middle section. From these results, it can be noted that the present 
results agree well with the results by Ref. [6] for the various conditions of the 
analysis. Analysis of cantilever FGM beam under uniform pressure 
     The analysis of the cantilever FGM beam subjected to the uniform pressure as 
shown in Fig. 2 have been carried out [9]. The length l is l = 1 [m] and the 
thickness h is h = 0.2 [m]. The material properties at z = z0 = 0 are given Table 1, 
and the magnitude of the transverse pressure p0 is p0 = 1 [Pa].  
 

 

Figure 4: Axial stress ),(/),( hxzx xxxx   through the thickness of FGM 

beam at 2lx  . 

     For the graded index 3 , Fig. 6 shows the distributions of the stress 

component xx  at the clamped edge. The horizontal axis is the non-dimensional 

coordinate z  and the vertical axis is the stress values. In this figure, “Ref. [9]” 
means the results of Ref. [9]. The present results again are in good agreement 
with those of Ref. [9]. It was also confirmed that the distributions of the stress 

components zz and zx  are also in good agreement. 
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Figure 5: Shear stress )(/ averagexzxz   through the thickness of FGM 

beam at 2lx  . 

Table 1:  Materials properties. 

Material constants Values [1/Pa] 
0
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33s  

111052.9   

0
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101037.1   
 
 

 

Figure 6: Stress at the clamped end ),( zlxx  ( 3 ). 
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4.2 Analysis of simply supported FGM beam under uniform pressure 

The simply supported FGM beam as shown in Fig. 1 is analyzed. The sizes, the 
elastic constants and the applied load are the same as those of the previous 
section. The graded index α is assumed as 3α   . The distributions of the stress 
components xxσ  at the l 2 0.5x    and zxσ  at the 0x   are plotted in Figs. 7–

8. The number of terms adopted in the Fourier series of Eqns. (9) and (14) is ten. 
We confirmed that taking at least eight terms is sufficient accuracy for the 
solution in this problem. 
 

 

Figure 7: Stress xxσ  through the thickness at 0.5.x   
 

 

Figure 8: Stress zxσ  through the thickness at 0x  . 

graded index α=+3.0

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

z/h

σ
xx

graded index α=+3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-0.5 -0.3 -0.1 0.1 0.3 0.5

z/h

σ
zx

128  Materials Characterisation V

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 72, © 2011 WIT Press



     From these results, the value of the stress value xx  is greater than that of the 

stress zx . Comparing the tensile stress xx  on the bottom surface with the 

compressive stress xx  on the top surface, the greater compressive stress is 

caused on the softer surface. The shear stress distribution zx  is different from 

that for homogeneous beams. The point where the maximum stress appears 
moves toward the softer surface. It may be possible to control distribution of 
stresses by adjustment of materials properties. 
 

5 Concluding remarks 

In this paper, one analytical solution method for two-dimensional elastostatic 
problems in FGMs in which the properties of the materials vary exponentially in 
one direction is proposed. The method is based on the idea that the governing 
equation of this problem is of the same form as the governing equation for the 
plate bending with variable rigidity. The analysis method uses the Airy stress 
function. From analysis of a few numerical examples, most of the results 
correlate well with other solutions and the validity of the method is shown. The 
distributions of displacement components are not stated, however we can obtain 
them by integrating the strains and displacements relationships. 
     Future work will be focused on development of an analytical method of 
solution for analyzing problems of FGMs having an arbitrary variation of their 
material properties expressed by functions other than exponential. 
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