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ABSTRACT

The extension of a plane crack of arbitrary shape in an elastic solid is discussed for
G-based laws of propagation. It is shown that the rate of extension is governed by a
variational inequality in which the second derivative of the potential energy and of the
dissipated energy play a fundamental role. Crack surface is the principal unknown, the
differentiation of energy must be performed with respect to a variable domain with
moving boundary. Bifurcation and stability of the crack front curve can be discussed
as in plasticity. The obtained results are illustrated by some simple analytical exam-
ples.

INTRODUCTION

The propagation of plane cracks of arbitrary shape is an interesting problem in fatigue
or in fracture analysis. For example, the study of a plane crack of delamination propa-
gating in laminated composites, or of interface cracks in thin films or in surface coat-
ings of different kind, has been the subject of many discussions in the recent litera-
ture [1,3,9,10,14,15]. On the other hand, some models of damage mechanics also lead
to study the extension of a damage zone in a solid [2,4,6,7,12,14]. The objective of
this paper is to present some general results on the subject concerning the rate prob-
lem and stability or bifurcation analysis.

GENERAL EQUATIONS

An elastic solid with a propagating plane crack is a mechanical system undergoing
irreversible transformation. The associated irreversible parameter is the crack surface,
a plane domain Q of boundary S as shown in Fig. 1.
Its evolution is associated with a total potential energy W :
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410 Free and Moving Boundary Problems

W = w(e(u)) dV - F(X).u ds (1)

In this expression, w(e) denotes the volumic density of elastic deformation and F is the
applied forces, assumed to depend on a force or displacement control parameter X.
If only quasi-static evolutions are considered, it is well known that the displacement
field at equilibrium u can be implicitly defined as a function of the given state of
crack 0 and of control X :

u=u(0,X) (2)

via the equilibrium equations :

(3)w,< 6e dV - F Su ds = 0 .
Jv JsIV

The total potential energy can be then considered as a function of 0 and X :

W = W(0,X) . (4)

To introduce the generalized force associated with an extension of Q, cf. [4,12], it is
necessary to make the derivation of energy with respect to a domain W,Q by the
techniques of derivation with respect to a geometric domain.

It is established that if <5Q denotes the rate of the normal extension of the present
boundary S, then the following expression holds :

W,Q . 60 = - G50 ds (5)
JS

where G denotes the energy release rate at a point of the moving surface S and repre-
sents the local value of generalized force G associated with the motion of Q.

For example, for a plane crack in a three-dimensional solid, G is the limiting value of
the local Rice-Eshelby integrals :

G = JO with jo = Lim^ o (wn, - n.a.û ) dP (6)
Jr

For a damage zone, the expression of G is [12] :

G = [w - n.a.u,n ] (7)

and for a del ami nation crack in a composite plate or a thin film [3,14,15] :

G = [w - n.N.u,n - n.M.VVw.n] (8)

From (5) and from the energy balance, it follows that the dissipation (which is also
the product of the entropy production by the temperature) is simply a product of
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Free and Moving Boundary Problems 411

forces and fluxes :

d = G.O = G(s) . 0 (s) ds (9)
Js

It may be useful to remark that in the same spirit, the second derivative of energy is :

60 . W,QQ .60 = - 6G + 60 . 60 ds (10)
JS I * J

where 6G denotes the variation of G following the motion 60 of 0 and R is the local
curvature of S. A more symmetric expression of the second derivative can be obtained
from the expression of 6G in terms of 60 .

The G- based crack propagation law :

If G(s) < G<, then 0(s) = 0 (no propagation) (11)
If G(s) = GC then 6(s) ̂0 (possible propagation)

is associated with the dissipation potential :

D(Q,Q) = G, 0(s) ds for 6(s) >0 (12)
Js

If GC is a constant, the total mechanical energy <& can be introduced as a function of
the present state :

*(Q,X) = W(Q,X) + Ge da (13)
Jo

where the second term is the total potential energy and the third term represents the
surface energy dissipated by crack extension.

RATE PROBLEM

The rate problem of propagation of the crack surface 0 consists in the obtention of
the normal extension rate 0 in terms of the control rate X when the present state is
assumed to be known. Local rate equations follow directly from (11). After time der-
ivation, the identity (G(s) - G<,) 0(s) = 0 leads to :

0(s) >0 if G(s) =Ge and if ̂ (s) =0 (14)

0(s) = 0 if G(s) <G, or if G(s) = G, but ̂ (s) <0 .

AC**
where —• denotes the normal derivative of G following the motion of the boundary.

These equations can also be written in an equivalent variational form. Indeed after
(14):

0(s) >0, (̂s) <0 and ̂.6 =0 ifG(s) =G,, (15)

it follows that :
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412 Free and Moving Boundary Problems

(̂s) (60-G(s)) ̂ 0 for all 60 ̂0 (16)

or, in a global way :

dp (s) ( 6Q(s) - G(s) ) ds ;> 0 for all admissible 60. (17)
Js, ™

Admissible rates 60 must satisfy 60(s) ̂ 0 on the portion S^ where the propagation
limit is attained G(s) = G<. and 60(s) = 0 if G(s) < G^ .

Formally, from (5), (10) , (14) and (17), the rate 0 is then a solution of the follow-
ing variational inequality :

0 (s) > 0 on S* and satisfies V 60(s) >O onS*:
(18)

(60-0) .(*,oo.Q + W,ox.X) >0

where the second derivative $,QQ plays a fundamental role.

BIFURCATION AND STABILITY ANALYSES

As in incremental plasticity, the study of the rate problem enables us to follow step by
step the evolution of the crack surface. For example, stability and bifurcation of the
quasi-static response can be discussed as in plasticity by Hill's method [8,12] . The
following propositions are then obtained :

The present equilibrium is stable in the dynamic sense if :

60 . $,QQ . 60 is positive definite for 60(s) >0 on S<, . (19)

The stability criterion (19) can also be written as :

- 6G . 60 ds > 0 for any 60 ̂ O such that 60(s) >0 on S<, . (20)
Js

The present equilibrium is not a bifurcation point if the rate response is unique. Since
uniqueness is ensured by a similar but more restrictive positive condition by relaxing
the sign of <5Q(s) on S<, :

60 . <&,QQ .60 is a positive definite for all 60 , (21)

condition (21) represents a sufficient condition of non-bifurcation.

ILLUSTRATION

As an illustration, consider the debonding of a thin film which represents the surface
coating of a rigid half-space, due to the propagation of an interface crack ft with in-
ternal pressure p, cf. Fig. 2 . The film is assumed to be a membrane in isotrope ten-
sion T. If u is the transverse displacement of the membrane at point x, the associated

                                                             Transactions on Modelling and Simulation vol 6, © 1993 WIT Press, www.witpress.com, ISSN 1743-355X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



Free and Moving Boundary Problems 413

elastic energy is w = ̂  T |Vup

If the pressure p is controlled, p = X and the total potential energy is :

W = -*T|Vu|2 da - Xuda.
Jo ^ Jo

Local equations at equilibrium are :
T Au + p = 0 in 0 , u=OonS.

(22)

(23)

Since W,0 . 60 = \ (T Vu . V6u - X6u ) da + (w - Xu) 60 ds
Jo Js

where 5u is associated to 617 by the perturbation boundary problem which follows
from (23) :

T A6u = 0 in 0 , 6u + Vu.n 60 = 0 on S ,

finally one obtains :

W,Q . 60 = - w60 ds .
Is

(24)

(25)

Thus G(s) = w = ̂  T |Vu(s)p and 6G = T Vu . V6u + TVu . VVu . n 60, the

quadratic form to be considered is :

60 . $,QQ .60 = -6G . 60 ds = -TVu. (V6u + VVu.n 60) 60 ds . (26)
Js Js

The last expression can also be written in a symmetric form as :

T |V6u|2 da 4- V2TG, u,̂  60% ds .
Jo Js

If the internal volume is controlled, i.e. if :

J uda = X , (27)

the total potential energy is also given by the expression of the lagrangean :

W(0,X) = w d a - p u
Jo Jo

i da - X

p is the lagrangean multiplier associated with the volume constraint (27) ; p and u are
implicitely defined by (23) and (27).
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414 Free and Moving Boundary Problems

Thus W,Q . 60 = (TVu V6u - p 6u) da + (w- pu) 60 ds
Jo Js

with T A6u + 6p = O in 0 , 6u + Vu.n 60 = O on S , 6u da = 0 . (28)
la

Finally, expressions (25), (26) still hold with a different definition of 6u.

Consider for example the case of a circular interface crack of radius R, cf. Barest [1],

Equations (23) give u(r,0) = •£= (R̂  - r̂ ). The propagation limit G<, is attained on

2 /
the whole contour S when p = p^ = r-^2TG^ which is a limit value since equili-K.
brium is not possible for p > p^ . Let us study the stability of the equilibrium when p

= Pc'-

A boundary extension rate 60(0) can be expanded in Fourier series :
00
r̂  ..

60(6) = 6aQ + 2̂  (6aj cos j0 + 6bj sin j6)

1
The associated rate 6u defined by (24) is :

(29)

6u(r,0 =
2T j cos }6 + 6bj sin ]6)

1

Relation (26) leads to :

60 . .60 =

1

Thus, the considered equilibrium is unstable in mode 0 with pressure control.

In volume control, a similar result is obtained :

60 .60 = 27rG<.

1

It is not difficult to check that (20) is satisfied while (21) is not. The considered
equilibrium is stable but bifurcation is always possible in mode 1 since the boundary

extension rate can be of the form 60(0 = ^ R ^ + aj cos 6 + bj sin 6 , where aj

and bj are arbitrary small numbers such that 60(0 is non-negative.

The tunnel crack, cf. Fig. 2b where 0 is an infinite band of width 2R, is also an in-

teresting example. Transverse displacement is now u = r (R% -x%) after (23).
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Free and Moving Boundary Problems 415

A symmetric mode of bifurcation of the crack front of the form :
60(y) = <5a + Sb cos ky when x = R, 60(y) = da + 6b cos ky when x = -R (30)
can be considered. In this case, it follows from (28) that :

Su = (R2_%2) + D ga + 5b B cos ky with 6u da = 0 thus 6p
z i i i criKK. I Q

= -<5a % in volume control. By unit length, the quadratic form (26) is :K.

60 . $,QO .60 = 10 G,. £ 6a% + 6b^G^ ̂ - (kR thkR - 1) with kL = 2ir
K. ZK.

Thus, a symmetric bifurcation of the front following a sinus curve of wave length L,

with 2%& th ̂ = 1 , is always possible.

An skew- symmetric mode of bifurcation of the form :
6Q(y) = <5a + Sb cos ky when x = R, 60 = - 6a - 6b cos ky when x = -R (31)
can also be considered. In this case :

6u = fa (R2-x%) + ̂  5^ £ + pR §5 JMx. cosky with 6u da = 0 thus dp
Z 1 1 K 1 SUKK. I Q

= 0 in volume control. By unit length, the quadratic form (26) is :

60 . $,QQ .60 = G, ̂ 6b2 (kR com kR - 1)

A skew- symmetric bifurcation is always possible following a translation mode

(arbitrary 6a) or a sinus mode of wave length L with ~"^ coth ~*^ = 1 .
1~> L
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Fig.l Propagation of a plane crack

Fig.2 Thin membrane under internal
pressure

2a : Circular crack
2b : Tunnel crack

Fig. 2a Fig. 2b

-R 0 R
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